Homework

 Reading
— PAL, pp 201-216, 297-312

* Machine Projects

— Finish mp2warmup
* Questions?
— Start mp2 as soon as possible

 Labs
— Continue labs with your assigned section



Coding and Calling Functions

An assembly language programmer handles a
lot of detalls to coordinate the code for calling
a function and the code in the function itself

There are two mechanisms In the instruction
set for calling and returning from functions:

Linux system calls and returns
int $0x80 and iret

C library style function calls and returns
call and ret



Coding and Calling Functions

A really “old school” way to pass data back and
forth between assembly language functions is to
leave all data in “global memory”

» This was really very efficient back when CPU’s
were not very powerful and some did not have
hardware supported stack mechanisms

« Today we understand the software maintenance

problem that this choice creates and the CPU’s
are powerful enough for us to not need to do It
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Coding and Calling Functions

* A somewhat “old school” way to call functions:
— Load up registers with input values (if any) before call
— Unload return values (if any) from registers after return

« This is still in use in Linux system calls, such as:
# <unistd> write as a Linux system call

movl S$4, %eax

movl $1, %ebx

movl S$Soutput, %ecx

movl Slen,
int $0x80

sedx

H= H H= FH

system call value
file descriptor
*buffer

length

call to system



Coding and Calling Functions

« We won’t use the Linux system call and return
mechanism in this course, but:

— | feel that you should be aware of it and recognize it
when the textbook uses it in an example

— We’ll use the i ret Instruction later with hardware
Interrupts

« We will use the call and ret mechanism as IS
typically used for C library function calls



Call/Return to/from our C Function

# C compiler generated code for:

# static int z = mycode(x, V):;
.Lext
pushl v # put arg y on stack
pushl x # put arg x on stack
call mycode # call function mycode
addl $8, %esp # purge args from stack
movl %eax, =z # save return value

.data

.long O # location for wvariable z
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C Library Coding Conventions

Use same function name as used in the calling C
program except add a leading underscore ©

Setup C compiler stack frame (optional)

Use only $eax, $ecx, and $edx to not affect
registers the C compiler expects to be preserved

Save/restore any other registers on stack if used
Put return value In %eax

rRemove C compiler stack frame (optional)
Return




C Library Coding Conventions

« Example of Assembly code for C function:
int mycode (int x, 1nt V)

{

/* automatic variables */
int 1i;

int 7j;

return result;



C Library Coding Conventions

o Start with basic calling sequence discussed earlier

.Lext

.globl mycode

~mycode:

movl XxX,
ret

.end

$eax

H= FH= HF= FH

entry point label
code as needed
set return value

return to caller



C Library Coding Conventions

« |f function has arguments or automatic variables
(that require n bytes), include this optional code

« Assembly language after entry point label (enter):

pushl %ebp # set up stack frame

movl $esp, %ebp # save %esp in %ebp

subl $n, %esp # automatic variables
« Assembly language before ret (leave):

mov 1l sebp, %Sesp # restore %esp from %ebp

popl $ebp # restore %ebp
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C Compiler Reserved Registers

» The C compiler assumes it can keep data in certain
registers (%ebx, %ebp) when it generates code

It assembly code uses compiler’s reserved registers, it
must save and restore the values for the calling C code

Example:

... # we can’t use %ebx yet
, >~ pushl %ebx # save register contents
Matching pair ... # we can use %ebx now
. > popl %ebx # restore %ebx
# we can’t use %ebx any more

ret
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C Library Coding Conventions

o State of the stack during function execution:

j = -8(%ebp)

%esp %ebp
Lower level Points to previous stack frame
_Function Calls OINnts to previou .
%ebx | | | |%ebp | %eip X y
Automatic Return| Argument
Lower Level Variables Address  Variables
Function Returns i = -4(%ebp) | X = 8(%ebp)
y = 12(%ebp)
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Turning It Around

 Calling a C function from Assembly Language

—Can use printf to help debug assembly code
(although 1it’s better to use either tutor or gdb as a
debugger)

—Assume C functions “clobber” the contents of the
%eax, %ecx, and %edx registers

—If you need to save them across a C function call:
 Push them on the stack before the call
» Pop them off the stack after the return
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Printing From Assembler

 The C calling routine (helloc.c according to our
convention) to get things going Is:

extern void hello();
int main(int argc, char ** argv)

{
hello () ;

return 0;
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Printing From Assembler

» Assembly code to print Hello:

.globl  hello

.text

_hello:
pushl Shellostr
call _printf
addl $4, %esp
ret
.data

hellostr:

.asciz “Hello\n”
.end

# pass string argument
# print the string
# restore stack

# printf format string
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Printing from Assembler

« Assembly code to use a format statement and variable:

pushl x

pushl Sformat

call _printf

addl $8, %esp

X 1s a 32-bit integer
polnter to format
call C printf routine
purge the arguments

X: .long 0x341256
format: .asciz “x 1is: %d”
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Preserving Compiler Scratch Registers

» C compiler assumes that it can use certain registers when
It generates code (%oeax, %ecx, and %edx)

» A C function may or may not clobber the value of these
registers

» |f assembly code needs to preserve the values of these
registers across a C function call, it must save/restore
their:

.. # 1if ecx 1s in use
pushl $ecx # save %ecx
call _cFunction # may clobber ecx
popl %ecx # restore %ecx

i

ecx 1s OK agailn
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Integrating C and Assembly

Pick up the makefile from ~bobw/cs341/mp2
Always read the makefile for a program first!

The makefile expects a “matched pair” of source names
— C driver filename is mycodec.c

— Assembly filename is mycode.s

The make file uses macro substitutions for input:

— The format of the make command is:

make A=mycode
Note: Examples are located in: ~bobw/cs341/examples/lecture06
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Example: Function cpuid

e C “driver” 1n file cpuidc.c to execute code in cpuid.s

/* cpuidc.c - C driver to test cpuid function
* bob wilson - 1/15/2012
*/

#include <stdio.h>

extern char *cpuid(); /* our .s file is external*/

int main(int argc, char **argv)

{
printf ("The cpu ID is: %s\n", cpuid());
return 0;
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Example: Function cpuid

 Assembly code for function in file cpuid.s
# cpuid.s C callable function to get cpu ID value

.data

buffer:
.asciz "Overwritten!" # overwritten later
.text
.globl cpuid

_cpuid:
movl $0, %$eax zero to get Vendor ID
cpuid get 1t

point to string buffer
move four chars

move four chars

move four chars

string pointer is 1in %eax

movl Sbuffer, %eax
movl %ebx, (%eax)
movl %edx, 4 (%eax)
movl %ecx, 8 (%eax)
ret

.end

S = H S S



Self Modifying Code ®

« Our assembler does not actually support cpuid
Instruction, so | made the code self-modifying:

_cpuid:
movb S$0x0f,
movb $0xa?2,
movl $0, %eax
cpuidl:
nop
cpuid?:

nop

cpuidl
cpuid?

H= FH oS o F

patch in the cpuid first byte
patch in the cpuid second byte
input to cpuid for ID value
hex for cpuid instruction here

O0x0f replaces 0x90

Oxa2 replaces 0x90
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Self Modifying Code ®

* Obviously, the self modifying code I used for
this demonstration would not work if:
— The code is physically located in PROM/ROM

— There iIs an O/S like UNIX/Linux that protects the
code space from being modified (A problem that
we avoid using the Tutor VM)

* Try justitying the “kludge” in the next slide to
the maintenance programmer!!
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Self Modifying Code in C ®

int main(int argc, char **args)

{
char function [100]; // array to hold the machine code bytes of the function

// I put machine code instructions byte by byte into the function array:

// Instruction 1l: movl the &function[6] to the %eax (for return value)

// Instruction 2: the machine code for a ret instruction (0xc3)

// Following the ret instruction, I put the bytes of the string “Hello World”
// with a null terminator into the array starting at function[6]

function[0] = 0xb8; // op code for movl immediate data to %eax
function[l] = (int) &function[6] & Oxff; // immediate data field
function[2] = (int) &function[6] >> 8 & Oxff; // little endian format
function[3] = (int) &function[6] >> 16 & O0xff; // four bytes for the
function[4] = (int) &function[6] >> 24 & 0xff; // address of the string
function[5] = 0xc3; // op code for ret
function([6] = 'H'; // string whose address is returned is stored here
// rest of characters in string omitted for clarity
function[1l7] = 0; // null terminator for the string

// execute the function whose address is the array
printf ("%s\n", (* (char * (*) ()) function) ());

return O;



