Homework

 Reading
— PAL, pp 201-216, 297-312

* Machine Projects

— Finish mp2warmup
* Questions?
— Start mp2 as soon as possible

 Labs
— Continue labs with your assigned section

Coding and Calling Functions

An assembly language programmer handles a
lot of detalls to coordinate the code for calling
a function and the code in the function itself

There are two mechanisms In the instruction
set for calling and returning from functions:

Linux system calls and returns
int $0x80 and iret

C library style function calls and returns
call and ret

Coding and Calling Functions

A really “old school” way to pass data back and
forth between assembly language functions is to
leave all data in “global memory”

» This was really very efficient back when CPU’s
were not very powerful and some did not have
hardware supported stack mechanisms

« Today we understand the software maintenance

problem that this choice creates and the CPU’s
are powerful enough for us to not need to do It

3

Coding and Calling Functions

* A somewhat “old school” way to call functions:
— Load up registers with input values (if any) before call
— Unload return values (if any) from registers after return

« This is still in use in Linux system calls, such as:
<unistd> write as a Linux system call

movl S$4, %eax

movl $1, %ebx

movl S$Soutput, %ecx

movl Slen,
int $0x80

sedx

H= H H= FH

system call value
file descriptor
*buffer

length

call to system

Coding and Calling Functions

« We won’t use the Linux system call and return
mechanism in this course, but:

— | feel that you should be aware of it and recognize it
when the textbook uses it in an example

— We’ll use the i ret Instruction later with hardware
Interrupts

« We will use the call and ret mechanism as IS
typically used for C library function calls

Call/Return to/from our C Function

C compiler generated code for:

static int z = mycode(x, V):;
.Lext
pushl v # put arg y on stack
pushl x # put arg x on stack
call mycode # call function mycode
addl $8, %esp # purge args from stack
movl %eax, =z # save return value

.data

.long O # location for wvariable z
6

C Library Coding Conventions

Use same function name as used in the calling C
program except add a leading underscore ©

Setup C compiler stack frame (optional)

Use only $eax, $ecx, and $edx to not affect
registers the C compiler expects to be preserved

Save/restore any other registers on stack if used
Put return value In %eax

rRemove C compiler stack frame (optional)
Return

C Library Coding Conventions

« Example of Assembly code for C function:
int mycode (int x, 1nt V)

{

/* automatic variables */
int 1i;

int 7j;

return result;

C Library Coding Conventions

o Start with basic calling sequence discussed earlier

.Lext

.globl mycode

~mycode:

movl XxX,
ret

.end

$eax

H= FH= HF= FH

entry point label
code as needed
set return value

return to caller

C Library Coding Conventions

« |f function has arguments or automatic variables
(that require n bytes), include this optional code

« Assembly language after entry point label (enter):

pushl %ebp # set up stack frame

movl $esp, %ebp # save %esp in %ebp

subl $n, %esp # automatic variables
« Assembly language before ret (leave):

mov 1l sebp, %Sesp # restore %esp from %ebp

popl $ebp # restore %ebp

10

C Compiler Reserved Registers

» The C compiler assumes it can keep data in certain
registers (%ebx, %ebp) when it generates code

It assembly code uses compiler’s reserved registers, it
must save and restore the values for the calling C code

Example:

... # we can’t use %ebx yet
, >~ pushl %ebx # save register contents
Matching pair ... # we can use %ebx now
. > popl %ebx # restore %ebx
we can’t use %ebx any more

ret

11

C Library Coding Conventions

o State of the stack during function execution:

j = -8(%ebp)

%esp %ebp
Lower level Points to previous stack frame
_Function Calls OINnts to previou .
%ebx | | | |%ebp | %eip X y
Automatic Return| Argument
Lower Level Variables Address Variables
Function Returns i = -4(%ebp) | X = 8(%ebp)
y = 12(%ebp)

12

Turning It Around

 Calling a C function from Assembly Language

—Can use printf to help debug assembly code
(although 1it’s better to use either tutor or gdb as a
debugger)

—Assume C functions “clobber” the contents of the
%eax, %ecx, and %edx registers

—If you need to save them across a C function call:
 Push them on the stack before the call
» Pop them off the stack after the return

13

Printing From Assembler

 The C calling routine (helloc.c according to our
convention) to get things going Is:

extern void hello();
int main(int argc, char ** argv)

{
hello () ;

return 0;

14

Printing From Assembler

» Assembly code to print Hello:

.globl hello

.text

_hello:
pushl Shellostr
call _printf
addl $4, %esp
ret
.data

hellostr:

.asciz “Hello\n”
.end

pass string argument
print the string
restore stack

printf format string

15

Printing from Assembler

« Assembly code to use a format statement and variable:

pushl x

pushl Sformat

call _printf

addl $8, %esp

X 1s a 32-bit integer
polnter to format
call C printf routine
purge the arguments

X: .long 0x341256
format: .asciz “x 1is: %d”

16

Preserving Compiler Scratch Registers

» C compiler assumes that it can use certain registers when
It generates code (%oeax, %ecx, and %edx)

» A C function may or may not clobber the value of these
registers

» |f assembly code needs to preserve the values of these
registers across a C function call, it must save/restore
their:

.. # 1if ecx 1s in use
pushl $ecx # save %ecx
call _cFunction # may clobber ecx
popl %ecx # restore %ecx

i

ecx 1s OK agailn

17

Integrating C and Assembly

Pick up the makefile from ~bobw/cs341/mp2
Always read the makefile for a program first!

The makefile expects a “matched pair” of source names
— C driver filename is mycodec.c

— Assembly filename is mycode.s

The make file uses macro substitutions for input:

— The format of the make command is:

make A=mycode
Note: Examples are located in: ~bobw/cs341/examples/lecture06

18

Example: Function cpuid

e C “driver” 1n file cpuidc.c to execute code in cpuid.s

/* cpuidc.c - C driver to test cpuid function
* bob wilson - 1/15/2012
*/

#include <stdio.h>

extern char *cpuid(); /* our .s file is external*/

int main(int argc, char **argv)

{
printf ("The cpu ID is: %s\n", cpuid());
return 0;

19

Example: Function cpuid

 Assembly code for function in file cpuid.s
cpuid.s C callable function to get cpu ID value

.data

buffer:
.asciz "Overwritten!" # overwritten later
.text
.globl cpuid

_cpuid:
movl $0, %$eax zero to get Vendor ID
cpuid get 1t

point to string buffer
move four chars

move four chars

move four chars

string pointer is 1in %eax

movl Sbuffer, %eax
movl %ebx, (%eax)
movl %edx, 4 (%eax)
movl %ecx, 8 (%eax)
ret

.end

S = H S S

Self Modifying Code ®

« Our assembler does not actually support cpuid
Instruction, so | made the code self-modifying:

_cpuid:
movb S$0x0f,
movb $0xa?2,
movl $0, %eax
cpuidl:
nop
cpuid?:

nop

cpuidl
cpuid?

H= FH oS o F

patch in the cpuid first byte
patch in the cpuid second byte
input to cpuid for ID value
hex for cpuid instruction here

O0x0f replaces 0x90

Oxa2 replaces 0x90

21

Self Modifying Code ®

* Obviously, the self modifying code I used for
this demonstration would not work if:
— The code is physically located in PROM/ROM

— There iIs an O/S like UNIX/Linux that protects the
code space from being modified (A problem that
we avoid using the Tutor VM)

* Try justitying the “kludge” in the next slide to
the maintenance programmer!!

22

Self Modifying Code in C ®

int main(int argc, char **args)

{
char function [100]; // array to hold the machine code bytes of the function

// I put machine code instructions byte by byte into the function array:

// Instruction 1l: movl the &function[6] to the %eax (for return value)

// Instruction 2: the machine code for a ret instruction (0xc3)

// Following the ret instruction, I put the bytes of the string “Hello World”
// with a null terminator into the array starting at function[6]

function[0] = 0xb8; // op code for movl immediate data to %eax
function[l] = (int) &function[6] & Oxff; // immediate data field
function[2] = (int) &function[6] >> 8 & Oxff; // little endian format
function[3] = (int) &function[6] >> 16 & O0xff; // four bytes for the
function[4] = (int) &function[6] >> 24 & 0xff; // address of the string
function[5] = 0xc3; // op code for ret
function([6] = 'H'; // string whose address is returned is stored here
// rest of characters in string omitted for clarity
function[1l7] = 0; // null terminator for the string

// execute the function whose address is the array
printf ("%s\n", (* (char * (*) ()) function) ());

return O;

