Note: Slides are posted on the class website, protected by a password written on the board. If you forget it, email me at eoneil@cs.umb.edu for it.

Reading: see class home page www.cs.umb.edu/cs630.

Relational Algebra

CS430/630 Lecture 2

Relational Query Languages

Query languages:

Allow manipulation and retrieval of data from a database

Relational model supports simple, powerful QLs:

- Strong formal foundation based on logic
- Allows for aggressive optimization

Query Languages != programming languages

- QLs not intended to be used for complex step-by-step calculations
- QLs support easy, efficient access to large data sets
- New QL: GraphQL, released by Facebook in 2015, not tableoriented in its syntax, but can use data from an RDBMS.

Formal Relational Query Languages

- Two languages form the basis for SQL:
 - Relational Algebra:
 - operational
 - useful for representing execution plans
 - very relevant as it is used by query optimizers!
 - gets us thinking in tables, understanding joins
 - Relational Calculus:
 - Lets users describe the result, NOT how to compute it declarative
 - We will focus on relational algebra

Preliminaries

- A query is applied to relation instances, and the result of a query is also a relation instance
 - Schemas of input relations for a query are fixed
 - The schema for the result of a given query is determined by operand schemas and operator type
- These relations have no duplicate tuples, i.e., a relation is an (unordered) set of tuples/rows
- Each operation returns a relation
 - operations can be composed!
 - Well-formed expression: a relation, or the results of a relational algebra operation on one or two relations

Relational Algebra

- Basic operations:
 - \triangleright Selection σ Selects a subset of rows from relation
 - ightharpoonup Projection π Deletes unwanted columns from relation
 - Cross-product X Allows us to combine several relations

 - Division ÷ A bit more complex, will cover later on
 - ▶ Set Operations: Union U Intersection Difference -
 - Renaming P Helper operator, does not derive new result, just renames relations and fields

$$\rho(R,E)$$

here R becomes another name for E

Example Schema, with table contents

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Boats

bid	name	color
101	interlake	red
103	clipper	green

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Schema in abbreviated format

Sailors <u>sid</u> sname rating age

Boats

<u>bid</u>	name	color
------------	------	-------

sid	<u>bid</u>	day
-----	------------	-----

- No table contents (not part of *schema* anyway)
- No domains shown for columns (string, integer, etc.)
- Just table names, column names, keys of schema
- Compact, and enough for us to understand the database

Example Schema: Reserves Relation

sid	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

- Multiple entity ids in a key signals a relationship between those entities, here Sailor and Boat
 - Example: (22, 101, 10/10/96): Sailor 22 reserved boat 101 on 10/10/1996 (ancient example!)
- Note that day is part of the key here too
 - This means (sid, bid) is not a key
 - > So multiple rows can have same (sid, bid).
 - > Example: (22, 101, 10/10/2016)
 - Sailor 22 can reserve the same boat 101 on different days and the database can hold all of these reservations.

Relation Instances Over Time

Sailors

*S*1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S2

<u> </u>			
sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Reserves

R1

sid	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

Projection

- Unary operator (i.e., has only one argument)
- Deletes (projects out) attributes that are not in projection list

π_{attr1,attr2,...}relation

- Result Schema contains the attributes in the projection list
 - With the same names that they had in the input relation
- Projection operator has to eliminate duplicates!
 - Real systems typically do not do so by default
 - Duplicate elimination is expensive! (sorting)
 - In SQL, user must explicitly asks for duplicate eliminations (DISTINCT), but here in RA, it happens automatically

Projection Examples

*S*2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

 $\pi_{sname,rating}(S2)$

	age	
	35.0	
	55.5	
7	$\tau_{age}(S)$	2)

Selection

- Unary Operator
- Selects rows that satisfy selection condition

$$\sigma_{condition}$$
 relation

- Condition contains constants and attributes from relation
 - Evaluated for each individual tuple
 - ▶ May use logical connectors AND ($^{\land}$), OR ($^{\lor}$), NOT ($^{\neg}$)
- No duplicates in result! Why?
- Result Schema is identical to schema of the input relation

Selection Example

*S*2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

$$\sigma_{rating>8}(S2)$$

sname	rating
yuppy	9
rusty	10

Selection and Projection
$$\pi_{sname,rating}(\sigma_{rating} > 8^{(S2)})$$

Cross-Product

Binary Operator

$$R \times S$$

- ▶ Each row of relation R is paired with each row of S
- Result Schema has one field per field of R and S
 - Field names `inherited' when possible

Cross-Product Example

*S*1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

*R*1

sid	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

C=S1 X R1

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

Conflict: Both R and S have a field called sid

Cross-Product + Renaming Example

\boldsymbol{C}	sid1	sname	rating	age	sid2	bid	day
	22	dustin	7	45.0	22	101	10/10/96
	22	dustin	7	45.0	58	103	11/12/96
	31	lubber	8	55.5	22	101	10/10/96
	31	lubber	8	55.5	58	103	11/12/96
	58	rusty	10	35.0	22	101	10/10/96
	58	rusty	10	35.0	58	103	11/12/96

<u>Renaming operator</u> $\rho(C(1 \rightarrow sid1, 5 \rightarrow sid2), S1 \times R1)$

Condition Join (Theta-join)

$$R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$$

Result Schema same as that of cross-product

Condition Join (Theta-join) Example

S1 X R1

sid1	sname	rating	age	sid2	bid	day
	1 .		150	22	101	10/10/06
22	ausun	/	43.0	<i>LL</i>	101	10/10/90
22	dustin	7	45.0	58	103	11/12/96
21	1 1 1	0		22	101	10/10/06
131	TUDDET	O	ر.در	<i></i>	101	10/10/90
31	lubber	8	55.5	58	103	11/12/96
50	44.	10	25.0	22	101	10/10/06
120	Tusty	10	33.0	<i></i>	101	10/10/70
	<u> </u>	10	1050	~ 0	100	11/10/06
30	Tusty	10	33.0	20	103	11/12/90

$S1 \bowtie S1.sid < R1.sid$

sid1	sname	rating	age	sid2	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

Equi-Join

 A special case of condition join where the condition contains only equalities

$$R \bowtie R.attr1 = S.attr2^{S}$$

Result Schema similar to cross-product, but only one copy of fields for which equality is specified.

Equi-Join Example

S1 X R1

sname	rating	age	sid2	bid	day	
dustin	7	45.0	22	101	10/10/96	
dustin	7	45.0	58	103	11/12/96	
lubber	8		22	101	10/10/26	
11-1	8		50	102	11/12/06	
44.7	10	25.0	22	101	10/10/06	
rusty	10	35.0	58	101	11/12/96	
	dustin dustin lubber lubber	dustin 7 lubber 8 lubber 8 rusty 10	dustin 7 45.0 dustin 7 45.0 lubber 8 55.5 lubber 8 55.5 rusty 10 35.0	dustin 7 45.0 22 dustin 7 45.0 58 lubber 8 55.5 22 lubber 8 55.5 58 rusty 10 35.0 22	dustin 7 45.0 22 101 dustin 7 45.0 58 103 lubber 8 55.5 22 101 lubber 8 55.5 58 103 rusty 10 35.0 22 101	dustin 7 45.0 22 101 10/10/96 dustin 7 45.0 58 103 11/12/96 lubber 8 55.5 22 101 10/10/96 lubber 8 55.5 58 103 11/12/96 rusty 10 35.0 22 101 10/10/96

$$S1 \bowtie_{S1.sid=R1.sid} R1$$
 or simply $S1 \bowtie R1$

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

Natural Join

▶ Equijoin on all common fields

$$R \bowtie S$$

Common fields are NOT duplicated in the result

$$S1 \bowtie R1$$

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

Note how it extends each R row to add sailor details

Union, Intersection, Set-Difference

- All of these operations take two input relations, which must be <u>union-compatible</u>
 - Same number of fields.
 - Corresponding fields have the same domain (type): integer, real, string, date
 - (We will see that SQL has "type compatibility", so char(10) and char(20) can be union'd, for example, to char(20), and float vs. integer, to float, but relational algebra has this simpler rule)
- What is the schema of result?

Union Example: common case of same field names

*S*1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

*S*2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

 $S1 \cup S2$

Union Example: case of different field names

*S*1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Boats

<u>bid</u>	name	color
101	interlake	red
103	clipper	green

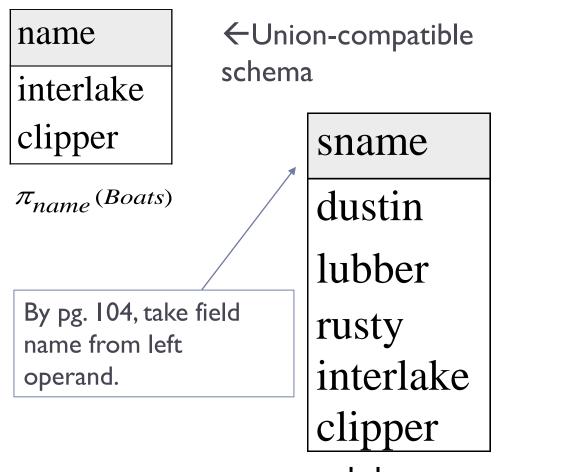
sname
dustin
lubber
rusty

name interlake clipper

 π_{name} (Boats)

←Union-compatible schema

 $\pi_{sname}(S1)$


$$\pi_{sname}(S1) \bigcup \pi_{name}(Boats) =$$

Union Example: case of different field names

sname
dustin
lubber
rusty

 $\pi_{sname}(S1)$

 π_{sname} (S1) $\bigcup \pi_{name}$ (Boats)

Intersection Example

*S*1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

*S*2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

 $S1 \cap S2$

Set-Difference Example

*S*1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

*S*2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
22	dustin	7	45.0

S1-S2

Example Schema

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Boats

<u>bid</u>	name	color
101	interlake	red
103	clipper	green

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Sample Query 1

Sailors Boats

sid sname rating age

bid name color

Reserves

sid bid day

Find names of sailors who've reserved boat #103

Detail of sailor sid sid, bid in reserves table

$$\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$$

$$\pi_{sname}(\sigma_{bid=103}(Reserves \bowtie Sailors))$$

Example Schema

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Boats

<u>bid</u>	name	color
101	interlake	red
103	clipper	green

<u>sid</u>	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Sample Query 2

Sailors Boats

sid sname rating age

bid name color

Reserves

sid bid day

Find names of sailors who've reserved a red boat
Detail of sailor sid sid, bid ... Detail of boat bid

$$\pi_{sname}(\pi_{sid}((\pi_{bid}(\sigma_{color='red'}B))\bowtie R)\bowtie S)$$

$$\pi_{sname}((\sigma_{color='red'}Boats) \bowtie Reserves \bowtie Sailors)$$

