
Final Review

CS634
May 11, 2016

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Coverage

 Text, chapters 8 through 18, 25 (hw1 – hw6)

 PKs, FKs, E-R to Relational: Text, Sec. 3.2-3.5, to pg. 77 inclusive,
createdb.sql

 Basics of RAID: Sec. 9.2, Slides of Feb 1

 SQL for creating and dropping tables (standardized), Not
standardized: create indexes, commands for bulk loading big
tables (Oracle case).

 Query optimization, chap 15

 See MidtermReview. Since midterm exam:

 Transactions, Concurrency Control, chap. 16-17, hw5

 Crash Recovery, chap 18, hw6

 Data Warehousing and Decision Support, chap 25, hw6

Highlights of before-midterm coverage

 Disks: idea of cylinders, LBNs running in “next” order

 RAID levels

 Concept of “File”: sequence of pages, possibly on multiple
disks, accessible by random access by page no.

 Unordered “heap”, records have RIDs for random access

 Sorted (less common) by some record key

 Clustered file (nearly sorted by some record key)

 Concept of an index File: has a key for lookup to its records

 Itself can by a heap File or a clustered File (then a clustered index)

 Its records are called “data entries”, three formats listed on pg. 276

 The whole data “row”, which contains the key

 (key, RID) where the data is found by the RID (in another File)

 Book also lists (key, list of RIDs), but this is just a compression

Highlights of before-midterm coverage
 A Table is implemented by one or more Files

 Heap file for data records plus 0 or more non-clustered indexes (themselves in heap files)

 Clustered file for data records (Alt. 1) plus 0 or more non-clustered indexes (themselves
in heap files)

 Clustered file for data entries (Alt. 2) plus heap file in index-sorted order, plus 0 or more
non-clustered indexes.

 A table can have only one clustered index!

 Normally, only one index can be used at a time for access to table data by the
storage engine (we saw this later), so see cases in Chap 8: heap file with unclustered
tree index, heap file with clustered index, etc.

 Chap. 10: concentrate on B-tree case

 Chap. 11: concentrate on linear hashing

 Chap. 12: access path, index matching rules, selectivity, reduction factors, query
plans, including use of indexes

 Chap. 13: external merge sort

 Chap. 14: More on matching indexes, projection by hashing, sorting, join methods

 Chap. 15: Evaluating alternative plans, incl. multiple-index plans, index-only
evaluation. Don’t worry about multiple-relation query optimization.

Architecture of a DBMS

Data

Disk Space Manager

Buffer Manager

A first course in database systems, 3rd ed, Ullman and Widom

Index/File/Record Manager

Execution Engine: join, sort,…

Query Compiler

User
SQL Query

Query Plan (optimized)

Index and Record requests

Page Commands

Read/Write pages

Disk I/O

5

Lock Manager
Recovery

Manager

Storage Manager,

Chap 8-11, 16-18

Query Processor
Chap 12-14

Chap 15

Chap 16-17
Chap 18

Query Blocks

 In fact this is an uncorrelated subquery: The inner block can

be evaluated once!

SELECT S.sname
FROM Sailors S
WHERE S.age IN

(SELECT MAX (S2.age)
FROM Sailors S2)

Query Blocks

 Looking for sailors who are of max age in their own rating

group.

 Correlated subquery: each row in S needs its own execution

of the inner block

SELECT S.sname
FROM Sailors S
WHERE S.age IN

(SELECT MAX (S2.age)
FROM Sailors S2

WHERE S2.rating = S.rating)

Block Optimization

 Block = Unit of optimization

 For each block, consider:
1. All available access methods, for each relation in FROM

clause

2. All left-deep join trees

 all ways to join the relations one-at-a-time

 all relation permutations and join methods

 Recall:

 Left table = outer table of a nested loop join

 Left table of NLJ can be pipelined: rows used one at a time in
order

 But need to consider other join methods too, giving up
pipelining in many cases

Relational Algebra Equivalences

 Why are they important?

 They allow us to:

 Convert cross-products to joins

 Cross products should always be avoided (when possible)

 Choose different join orders

 Recall that choice of outer/inner influences cost

 “Push-down” selections and projections ahead of joins

 When doing so decreases cost

Example Relational Algebra Equivalence

Commute selection with join

 Only if all attributes in condition appear in one relation and not in

the other: c includes only attributes from R

 Condition can be decomposed and “pushed” down before joins

 Here, c1 includes only attributes from R and c2 only attributes

from S

 SRSR cc

 SRSR cccc 2121

Single-table Plans With Indexes

 There are four cases:

1. Single-index access path

 Each matching index offers an alternative access path

 Choose one with lowest I/O cost

 Non-primary conjuncts, projection, aggregates/grouping applied
next

2. Multiple-index access path

 Each of several indexes used to retrieve set of rids

 Rid sets intersected, result sorted by page id

 Retrieve each page only once

 Non-primary conjuncts, projection, aggregates/grouping applied
next

Plans With Indexes (contd.)

3. Tree-index access path: extra possible use…

 If GROUP BY attributes prefix of tree index, retrieve tuples in

order required by GROUP BY

 Apply selection, projection for each retrieved tuple, then aggregate

 Works well for clustered indexes

Example: With tree index on rating

SELECT count(*), max(age)
FROM Sailors S
GROUP BY rating

Plans With Indexes (contd.)

3. Index-only access path

 If all attributes in query included in index, then there is no need to

access data records: index-only scan

 If index matches selection, even better: only part of index examined

 Does not matter if index is clustered or not!

 If GROUP BY attributes prefix of a tree index, no need to sort!

 Example: With tree index on rating

 Note count(*) doesn’t require access to row, just RID.

SELECT max(rating),count(*)
FROM Sailors S

Example Schema

 Similar to old schema; rname added

 Reserves:

 40 bytes long tuple, 100K records, 100 tuples per page, 1000 pages

 Sailors:

 50 bytes long tuple, 40K tuples, 80 tuples per page, 500 pages

 Assume index entry size 10% of data record size

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Cost Estimates for Single-Relation Plans

 Sequential scan of file:

 NPages(R)

 Index I on primary key matches selection

 Cost is Height(I)+1 for a B+ tree, about 1.2 for hash index

 Clustered index I matching one or more selects:

 NPages(CI) * product of RF’s of matching selects

Quick estimate: Npages(CI) = 1.1*NPages(TableData)

i.e. 10% more for needed keys

 Non-clustered index I matching one or more selects:

 (NPages(I)+NTuples(R)) * product of RF’s of matching selects

Quick estimate: Npages(I) = .1*Npages(R) (10% of data size)

Example

 File scan: retrieve all 500 pages

 Clustered Index I on rating

(1/NKeys(I)) * (NPages(CI)) = (1/10) * (50+500) pages

 Unclustered Index I on rating

(1/NKeys(I)) * (NPages(I)+NTuples(S)) = (1/10) * (50+40000) pages

SELECT S.sid
FROM Sailors S
WHERE S.rating=8

Queries Over Multiple Relations

 In System R only left-deep join trees are considered

 In order to restrict the search space

 Left-deep trees allow us to generate all fully pipelined plans

 Intermediate results not written to temporary files.

 Not all left-deep trees are fully pipelined (e.g., sort-merge join)

BA

C

D

BA

C

D

C DBA

Left-deep

Example of push downs of selections

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND S.rating>5 AND R.bid=100

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Push-down and pipelining

 But note that the right selection may not be best pushed-

down: can’t pipeline inner-table data for NLJ

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Can’t be NLJ here as it stands. For

NLJ, could materialize rating>5

result, with additional i/o. Or push

condition back up.

What are Transactions?

 So far, we looked at individual queries; in practice, a task

consists of a sequence of actions

 E.g., “Transfer $1000 from account A to account B”

 Subtract $1000 from account A

 Subtract transfer fee from account A

 Credit $1000 to account B

 A transaction is the DBMS’s view of a user program:

 Must be interpreted as “unit of work”: either entire transaction

executes, or no part of it executes/has any effect on DBMS

 Two special final actions: COMMIT or ABORT

21

ACID Properties

Transaction Management must fulfill four requirements:

1. Atomicity: either all actions within a transaction are carried
out, or none is

 Only actions of committed transactions must be visible

2. Consistency: concurrent execution must leave DBMS in
consistent state

3. Isolation: each transaction is protected from effects of other
concurrent transactions

 Net effect is that of some sequential execution

4. Durability: once a transaction commits, DBMS changes will
persist

 Conversely, if a transaction aborts/is aborted, there are no effects

22

Modeling Transactions

 User programs may carry out many operations …

 Data-related computations

 Prompting user for input, handling web requests

 … but the DBMS is only concerned about what data is

read/written from/to the database

 A transaction is abstracted by a sequence of time-ordered

read and write actions

 e.g., R(X), R(Y), W(X), W(Y)

 R=read, W=write, data element in parentheses

 Each individual action is indivisible, or atomic

 SQL UPDATE = R(X) W(X)

23

 Consider two transactions (in a really bad DB) where A = 100

 T1 & T2 are concurrent, running same transaction program

 T1& T2 both read old value, 100, add 100, store 200

 One of the updates has been lost!

 Consistency requirement: after execution, A should reflect all
deposits (Money should not be created or destroyed)

 No guarantee that T1 will execute before T2 or vice-versa…

 … but the net effect must be equivalent to these two transactions
running one-after-the-other in some order

Concurrency: lost update anomaly

T1: A = A + 100
T2: A = A + 100

24

 Consider two transactions (in a really bad DB) where A = 100

 T1 & T2 are concurrent, running same transaction program

 T1& T2 both read old value, 100, add 100, store 200

 One of the updates has been lost!

 Using R/W notation, marking conflicts: same data item, different

transactions, at least one a write:

R1(A) R2(A)W2(A)C2W1(A)C1

 First arc says T1 T2, second says T2T1, so there is a cycle in

the dependency graph

 This execution is not allowed under 2PL

Concurrency: lost update anomaly

25

Strict Two-Phase Locking (Strict 2PL)

 Protocol steps
 Each transaction must obtain a S (shared) lock on object before

reading, and an X (exclusive) lock on object before writing.

 All locks held are released when the transaction completes
 (Non-strict) 2PL: Release locks anytime, but cannot acquire locks after

releasing any lock.

 Strict 2PL allows only serializable schedules.
 It simplifies transaction aborts

 (Non-strict) 2PL also allows only serializable schedules, but
involves more complex abort processing

 Strict 2PL prevents anomalies if the set of database items
never changes: here insert and delete are excluded as not R
or W. With insert/delete, need index locking.

26

R1(A) R2(A)W2(A)C2W1(A)C1

 First arc says T1 T2, second says T2T3, so there is a

cycle in the dependency graph

 This execution is not allowed under 2PL

 Run it under 2PL:

S1(A) R1(A) S2(A) R2(A) --shows sharing of lock

<X2(A) blocked> --so look for next non-T2 operation to do

<X1(A) blocked>-- DEADLOCK, abort T2 (say)

A2 <X1(A) unblocked>W1(A) C1

Concurrency: lost update anomaly

27

R1(A) R2(A)W2(A)C2W1(A)C1

 Run it under 2PL, but get X lock for R(A) W(A) sequence:

X1(A) R1(A)<X2(A)blocked> --so skip T2 ops…

W1(A)C1 <X2(A) unblocked> R2(A)W2(A)C2

Works better!

Concurrency: lost update anomaly

28

Aborting Transactions

 When Ti is aborted, all its actions have to be undone

 if Tj reads an object last written by Ti, Tj must be aborted as well!

 cascading aborts can be avoided by releasing locks only at commit

 If Ti writes an object, Tj can read this only after Ti commits

 In Strict 2PL, cascading aborts are prevented

 At the cost of decreased concurrency

 No free lunch!

 Increased parallelism leads to locking protocol complexity

29

Deadlock Detection

 Create a waits-for graph:

 Nodes are transactions

 Edge from Ti to Tj if Ti is waiting for Tj to release a lock

T1: S(A), R(A), S(B)

T2: X(B),W(B) X(C)

T3: S(C), R(C)

T4: X(B)

T1 T2

T4 T3

30

X(A)

Dirty Reads

 Example: Reading Uncommitted Data (Dirty Reads)

R1(A) W1 (A) R2(A) W2 (A) R2 (B) W2 (B) R1 (B) W1 (B)

Note: commits are not involved in locating conflicts

T1T2 T2T1

 Again, this schedule can’t happen under 2PL

31

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

Index Locking

 Needed for full serializability in face of inserts and deletes

 Example: assume index on the rating field using
Alternative (2)

 Row locking is the industry standard now

 T1 should lock all the data entries with rating = 1

 If there are no records with rating = 1, T1 must lock the entries
adjacent to where data entry would be, if it existed!

 e.g., lock the last entry with rating = 0 and beginning of
rating=2

 If there is no suitable index, T1 must lock the table

Locking for B+ Trees (contd.)

 Searches

 Higher levels only direct searches for leaf pages

 Insertions

 Node on a path from root to modified leaf must be “locked” in

X mode only if a split can propagate up to it

 Similar point holds for deletions

 There are efficient locking protocols that keep the B-tree

healthy under concurrent access, and support 2PL on

rows, and provide index locking to avoid phantoms

Isolation Levels in Practice

 Databases default to RC, read-committed, so many apps

run that way, can have their read data changed, and

phantoms

 Web apps (JEE, anyway) have a hard time overriding RC,

so most are running at RC

 The 2PL locking scheme we studied was for RR,

repeatable read: transaction takes long term read and

write locks

 Long term = until commit of that transaction

Read Committed (RC) Isolation

 2PL can be modified for RC: take long-term write locks
but not long term read locks

 Reads are atomic as operations, but that’s it

 Lost updates can happen in RC: system takes 2PC locks
only for the write operations:

R1(A)R2(A)W2(B)C2W1(B)C1

R1(A)R2(A)X2(B)W2(B)C2X1(B)W1(B)C1 (RC isolation)

 Update statements are atomic, so that case of read-then-
write is safe even at RC

 Update T set A = A + 100 (safe at RC isolation)

 Remember to use update when possible!

Write-Ahead Logging (WAL)

 The Write-Ahead Logging Protocol:

1. Must force the log record for an update before the

corresponding data page gets to disk

2. Must write all log records for transaction before commit

returns

 Property 1 guarantees Atomicity

 Property 2 guarantees Durability

 We focus on the ARIES algorithm

 Algorithms for Recovery and Isolation Exploiting Semantics

Crash Recovery: Big Picture

Start from a checkpoint (found in
master record)

Three phases:

ANALYSIS: Find which
transactions committed or failed
since checkpoint

REDO all actions (repeat history)

UNDO effects of failed
transactions

Oldest log
rec. of Xact
active at crash

Smallest
recLSN in
dirty page
table after
Analysis

Last chkpt

CRASH

A R U

Data Warehousing

 Integrated data spanning long time

periods, often augmented with

summary information.

 Several gigabytes to terabytes

common, now petabytes too.

 Interactive response times expected

for complex queries; ad-hoc updates

uncommon.

 Read-mostly data

EXTERNAL DATA SOURCES

EXTRACT

TRANSFORM

LOAD

REFRESH

DATA

WAREHOUSE
Metadata

Repository

SUPPORTS

OLAP
DATA

MINING

OLAP: Multidimensional data model

 Example: sales data

 Dimensions: Product, Location, Time

 A measure is a numeric value like sales we want to

understand in terms of the dimensions

 Example measure: dollar sales value “sales”

 Example data point (one row of fact/cube table):

 Sales = 25 for pid=1, timeid=1, locid=1 is the sum of sales for that day, in

that location, for that product

 Pid=1: details in Product table

 Locid = 1: details in Location table

 Note aggregation here: sum of sales is most detailed data

