
RAID in Practice,

Overview of Indexing

CS634
Lecture 4, Feb 04 2014

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

1

Disks and Files: RAID in practice

For a big enterprise database: RAID 5 (or 6)

Example 32 disks in one box, with room to grow

(disk array pic)

• This RAID enclosure can hold up to 96 disks.

• Starter system with 8 disks, controller ~$18,000

• Uses 15Krpm disks, twice 7200rpm.

• Disks are 146GB, 300GB, …, 1TB each.

• Features automatic failover, rebuild on spare

• Why ever use these little 146GB disks?

2

http://en.wikipedia.org/wiki/File:HP_EVA4400-1.jpg

High-end RAID Example, continued

Why use small disks in enterprise RAID?

• Each disk, of any size, provides about 100ops/sec

at 7200rpm, 200 ops/sec at 15Krpm.

• Many apps need quick access to small data sets, so

the important performance measure is total ops/sec.

• So small disks are fine, and cheaper, and faster to

rebuild the replacement when crashed.

• 30 disks here means 30*200 = 6000 ops/sec. Here

keeping 2 as spares…

3

Low-end RAID Example

For a research project, or web startup, want

something cheaper…

Software RAID: OS drives ordinary disks

• Linux and Windows can do RAID 0, 1 in software.

• Linux can do software RAID 5, Windows Server

has a similar option.

4

Example of Software RAID

• 16 7200rpm disks of 200GB each for say $80 each,

total $1300

• 16-port disk controller ~$400

• Build 2 RAID arrays 6 disks each, keeping 4 spares.

• Database can span the multiple RAIDs easily.

• End up with 12*100 ops/sec capability at <$2000

• Why not one big RAID? RAID (below RAID 6)

can’t handle 2 disk failures, so keep arrays not too big.

Be ready to add another RAID to expand.

5

Hardware RAID

Instead of a “plain” disk controller, get a RAID

controller, AKA disk array controller.

End up with “hardware RAID”, looks like one big disk

to OS.

A 16-port RAID controller can cost $1500, provides

higher performance and system crash handling:

• Provides a cache to speed up reads and writes,

• Has battery backup or capacitors to power the cache

while it saves its state to SSD or disk.

• No auto-failover (that I know of, anyway)

6

On to Chapter 8: Intro to Indexing

7

Architecture of a DBMS

Data

Disk Space Manager

Buffer Manager

A first course in database systems, 3rd ed, Ullman and Widom

Index/File/Record Manager

Execution Engine

Query Compiler

User
SQL Query

Query Plan (optimized)

Index and Record requests

Page Commands

Read/Write pages

Disk I/O

8

Data Organization

 Fields (or attributes) are grouped into records

 In relational model, all records have same number of fields

 Fields can have variable length

 Records can be fixed-length (if all fields are fixed-length) or
variable-length

 Records are grouped into pages

 Collection of pages form a file

 Do NOT confuse with OS file

 This is a DBMS abstraction, but may be stored in an OS file or
multiple files or a “raw partition”

9

Files of Records

 Page or block access is low-level

 Higher levels of DBMS must be isolated from low-level details

 FILE abstraction

 collection of pages, each containing a collection of records

 May have a “header page” of general info

 May contain table data or index data or …, whatever the DB needs

 File operations

 read/delete/modify a record (specified using record id)

 insert record

 scan all records

10

Files of Records

May be organized in several ways:

 Heap files: no order in data records

 Intro p. 276, Covered in Sec. 9.5.1, and following slides

 Sorted file: data records have a key, and records are in that key

order (hard to maintain, so rarely used)

 Covered in Sec. 8.4.

 Clustered file: data records have a key, and records are pretty

much in that key order (more practical)

 Intro p. 277, more in Sec. 8.4.4

 Index file: records are “data entries”, several types exist

 Intro, pg. 276

11

Unordered Files: Heap

 Heap

 simplest file structure

 contains records in no particular order

 as file grows and shrinks, disk pages are allocated and de-

allocated

 To support record level operations, we must:

 keep track of the pages in a file

 keep track of free space on pages

 keep track of the records on a page

12

Heap File Implemented as a List

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Pages with
Free Space

Full Pages

13

Heap File Using a Page Directory

 Page entry in directory may include amount of free space

 Directory itself is a collection of pages

 linked list implementation is just one alternative

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

14

Record Formats: Fixed Length

 Information about field types same for all records
in a file; stored in system catalogs.

 Finding i’th field does not require scan of record.

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

15

Record Formats: Variable Length

 Two alternative formats (# fields is fixed):

Second offers direct access to i’th field, efficient storage
of nulls; small directory overhead. Ignore first format.

$ $ $ $

Fields Delimited by Special Symbols

F1 F2 F3 F4

F1 F2 F3 F4

Array of Field Offsets

16

Page Formats: Fixed Length Records

Record id = <page id, slot #>. In first alternative, moving records for free
space management changes rid; may not be acceptable.

See next slide for the usual row format for both fixed and variable-
length records.

Slot 1
Slot 2

Slot N

.

N M10. . .

M ... 3 2 1

PACKED UNPACKED, SLOTTED

Slot 1
Slot 2

Slot N

Free
Space

Slot M

11number
of records

number
of slots

17

Page Formats: Variable Length Records

Each slot has (offset, length) for record in slot directory.

Can move records on page without changing rid; so, attractive for
fixed-length records too.

Page i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer
to start
of free
space

SLOT DIRECTORY

N . . . 2 1

20 16 24 N

slots

18

Summary

 Disks provide cheap, non-volatile storage

 Random access, but cost depends on location of page on disk

 Important to arrange data sequentially to minimize seek and

rotation delays

 Buffer manager brings pages into RAM

 Page stays in RAM until released by requestor

 Written to disk when frame chosen for replacement

 Choice of frame to replace based on replacement policy

 Tries to pre-fetch several pages at a time

 Data stored in file which abstracts collection of records

 Files are split into pages, which can have several formats

Data Organization (review)

 Index/File/Record Manager provides abstraction of file of
records (or short, file)

 File of records is collection of pages

 I/F/R Manager also referred to File and Access Method layer, or
short, File Layer

 File operations

 read/delete/modify a record (specified using record id, AKA rid, Oracle
ROWID)

 insert record

 scan all records

 Record id functions as data locator

 contains information on the address of the record on disk

 e.g., page in file and directory slot number in page

 Ready for random access on disk, no real search

21

File Organization

1. Unsorted, or heap file

 Records stored in random order

2. Sorted according to set of attributes

 E.g., file sorted on <age>

 Or on the combination of <age, salary>

 No single organization is best for all operations

 E.g., sorted file is good for range queries

 Example: select * from T where key > 100 and key < 200

 But it is expensive to insert records

 We need to understand trade-offs of various organizations

22

Oracle Files and Tablespaces

 Oracle uses a “file” concept, which can refer to a file or a

raw partition, i.e. a low-level OS page container.

 An Oracle tablespace consists of one or more files

combined to make a file-like page container.

 Tablespaces contain tables and indexes.

 Thus when the book says File, think Oracle tablespace.

 To expand a tablespace, can add a new file to it.

 We can build tablespaces across multiple disks.

23

Oracle ROWIDs

 The Oracle ROWID format, the “extended ROWID” form, is

displayed as a string of four components

 Layout, with letters in each component representing a base-64

digit: (file# is relative to tablespace)

object# file# block#-in-file slot#-in-block

OOOOOOFFFBBBBBBRRR

AABio6AAHAAAWwcAAB

AABio6|AAH|AAAWwc|AAB

 Base 64: A..Za..z0..9+/ (A = 0, B=1, … + = 62, / = 63)

 64 = 2^6, so 6 bits each, 18 chars, means 108 bits total, or 13.5

bytes. Some internal RIDs may be shorter than this.

24

Oracle ROWIDs

You can use pseudo-column ROWID to display these

SQL> select sname, rowid from sailors;

SNAME ROWID

-------------------- ----------

jones AACHzYAAHAAANxnAAA

jonah AACHzYAAHAAANxnAAB

ahab AACHzYAAHAAANxnAAC

moby AACHzYAAHAAANxnAAD

 We see these rows are all on the same block, or page, of file
AAH = 7, block AAANxn = 13*64^2+(26+23)*64+(26+13)

 Mysql does not expose its RIDs. This is an Oracle-specific
feature, not part of SQL-92 or later standards.

25

Index Basics

Example Table: sailors(sid, sname, rating, age)

Create an index on sname and use it in a query:
SQL> create index snamex on sailors(sname);

Index created.

SQL> select * from sailors where sname='ahab';

SID SNAME RATING AGE

---------- ---------------- ---------- ----------

22 ahab 7 44

Here the index speeds up queries that need to find certain
values of sname in the table.

The index is named snamex, and its search key is sname.

It is associated with table sailors.

26

Index Basics

Example Table: sailors(sid, sname, rating, age)

Create an index on sname:

SQL> create index snamex on sailors(sname);

 The index is named snamex, and its search key is sname.

 Its lowest-level contents look like this: (Oracle)

sname ROWID

ahab AACHzYAAHAAANxnAAC

jonah AACHzYAAHAAANxnAAB

jones AACHzYAAHAAANxnAAA

moby AACHzYAAHAAANxnAAD

 Note how the sname values are now in sorted order. There is some

additional structure used to guide access to these “data entries”.

27

Indexes

 Structures that speed up operations

 Improve performance with some (small) storage overhead

 Sorted file can have only one sort order, e.g., age

 But what if we also need to support range queries on salary?

 We can build index on salary!

 Two varieties of index structures

 Tree-based: best for range queries, also support exact match

 Hash-based: best for exact-match queries

 No support for other queries

 Also bitmap indexes, not covered in Chap 8-12

28

Index Properties

 Provides “search-by-content” of a certain table

 Given search key, return rid or rids in the table

 For example, given ‘ahab’, return RID for that row in sailors

 An index has search key fields, subset of fields of its table

 For example, the index snamex has search key field sname,
one of the columns of table sailors.

 Any field subset in the table can be the search key

 Do not confuse term with primary key!

29

Index Properties

 Index contains collection of data entries

 A data entry for key value k contains enough info to locate
one or more table rows matching k in the search key
columns.

 For ex, the data entry for ‘ahab’ could be (‘ahab’, RID)

 A data entry for k is denoted k* in the text.

 so here k=‘ahab’, k* = (‘ahab’, RID)

 But not all data entries look like this. In some indexes, the
whole row (AKA data record) is held in the data entry.

30

Index Properties

 Example Table: sailors(sid, sname, rating, age)

 Example Index: on sname

 One way, the data entry for ‘ahab’ could be (‘ahab’, RID)

 so here k=‘ahab’, k* = (‘ahab’, RID)

 But not all data entries look like this. In some indexes, the
whole row (AKA data record) is held in the data entry.

 Then k=‘ahab’, k* = (22,’ahab’,7,44.0) with known key.

 This is alternative 1 on pg. 276, and above ex. is Alt. 2.

31

Tree Index Example

Leaf pages contain data entries, and are chained

Non-leaf pages have index entries, used to direct search

32

Non-leaf

Pages

Pages

(Sorted by search key)

Leaf

P0 K1 P1 K2 P 2 K m P m

index entry

Search with B+ Tree

Supports efficiently Exact-Match and Range queries on search key

33

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

Data entries

in leaf level are sorted!

Hash Index Example

 Buckets represent index entries, data entries look the same as in

the case of tree index

 The strength of the method relies in the capacity of function h

to distribute data uniformly

34

h(key) mod N

h
key

Primary bucket pages Overflow pages

1

0

N-1

Alternatives for Data Entry k* in Index

1. Data record with key value k

 Leaf node stores actual record

 Example: the sname index we looked at earlier: k* = (22,’ahab’,7,44.0)

 Only one such index can be used (without duplication of table data)

2. <k, rid> rid of data record with search key value k

 Only a pointer (rid) to the page and record are stored

 Example: the sname index we looked at earlier: k* = (‘ahab’, RID)

3. <k, list of rids> list of rids of records with search key k

 Similar to previous method, but more compact

 Disadvantage is that data entry is of variable length

 Can be considered a compressed version of 2.

 Several indexes with alternatives 2 and 3 may exist

35

Index Classification

 Primary vs. secondary

 if search key contains primary key, then it is called primary index

 Unique index: Search key contains a candidate key

 Clustered vs. unclustered

 If order of data records is close to order of data entries, then the

index is clustered; Alternative 1 is clustered by definition

 In practice, sorted files are rare, so alternative 1 is the choice; also

called a clustered file organization

 A file can be clustered on at most one search key

 Clustered indexes behave much better for ranges and scans

36

Clustered vs. Unclustered Index

 To build clustered index, first sort the heap file, leaving some

free space on each page for future inserts

 Overflow pages may be needed for inserts

 Hence order of data records is close to the sort order

37

Data entries

(Index File)

(Data file)

Data entries

CLUSTERED UNCLUSTERED

Clustered Indexes in Practice

 Oracle doesn’t have general clustered indexes

 It has “index organized tables” and “table clusters” that have some
similar characteristics

 If the table will have few updates, you can sort the load data, load
the table and it will be effectively clustered.

 Partitioning has a similar effect of grouping same-key data together,
well supported in Oracle.

 Mysql also does not have general clustered indexes

 It makes a clustered index on the primary key.

 That’s usually fine, but sometimes we would like the table clustered
by a non-unique key, say zipcode.

 Mysql also supports partitioning.

 DB2 and SQL Server have clustered indexes and partitioning.

38

