
I/O Cost Model, Tree Indexes

CS634
Lecture 5, Feb 10, 2016

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Storage Engine vs. QP (Query Processor)

Data

Disk Space Manager

Buffer Manager

A first course in database systems, 3rd ed, Ullman and Widom

Index/File/Record Manager

Execution Engine

Query Compiler

User
SQL Query

Query Plan (optimized)

Index and Record requests

Page Commands

Read/Write pages

Disk I/O

2

Storage engine

Query Processor

Storage engine API

Cost Model and Performance Analysis

 Focus on I/O cost (bulk of the processing cost)

 B The number of data pages in file

 R Number of records per page

 D Average time to read or write disk page

 F Fanout of tree index

 Operations to compare:

 Scan

 Equality search

 Range selection

 Insert a record

 Delete a record

3

Storage Engine API

4

 Example: The mysql storage engine API has calls to “ha_open”
a table, “ha_init_index” to specify the index to use if any,
“index_read” to fetch a row by key using the current table and
the current index.

 In general, the storage engine can work with one file of
records, or two files, one of “data records” and one that is
some kind of index for the first file. It can’t process more files
at once. Two index files are also possible, though not covered
in this chapter.

 It’s the job of the QP to break down the needed work into the
small steps that the storage engine can do.

Compared File Organizations

 Heap file

 Sorted file

 Clustered B+ tree file

 AKA clustered file

 Heap file with unclustered B+ tree index (2 files involved)

 Heap file with unclustered hash index (2 files involved)

5

Cost Model: Heap Files (unsorted)

 Given:
 B The number of data pages in file

 R Number of records per page

 D Average time to read or write disk page

 Scan B data pages, each takes read time D
 So i/o Cost = B*D

 Equality Search, for unique key: i/o Cost = 0.5*B*D

 Range Search: B*D

 Insert: read, write last page: 2*D

 Delete, given key: equality search, then rewrite page

 Delete, given RID: 2*D

 We never used R!

 One problem: D depends on how much seeking is needed

Size of D, time for one page access

 If pages are laid out sequentially on a track, the disk can

pull them off in one rotation. D may be .1 ms. or less.

 If pages are randomly situated on the disk, the seek time

dominates pages smaller than 1MB in size. D is about 3-5

ms.

 A Common page size is 8KB.

 For this chapter, we paste over the difference and pretend

D is constant, say 1 ms. for easy calculation.

Tree-Index Assumptions

 Tree Indexes:

 Alternative (1) data entry size = size of record

 Alternative (2): data entry size = 10% size of record

 67% occupancy (this is typical) Note 1/.67 = 1.5

 File size = 1.5 data size

 Scans:

 Leaf levels of a tree-index are chained.

 Index data-entries plus actual file scanned for unclustered

indexes (unrealistic, will revisit)

 Range searches:

 We use tree indexes to restrict the set of data records

fetched, but ignore hash indexes for now

8

Basic Analysis for Tree Indexes

B = # pages to hold row data compactly (“data size”)

 Alternative (1) data entry size = size of record

 Alternative (2) data entry size = 10% size of record

 This is an assumption for simplicity of analysis.

 67% occupancy, Note 1/.67 = 1.5, so 50% expansion on

disk to allow 33% space on pages for new rows.

 (Actually, follows from B-Tree algorithms)

 File size = 1.5 data size,

 Alternative (1): NLeafPgs = 1.5*B

 Alt. (2): NDataPgs = 1.5*B, NLeafPgs = .10*1.5*B = .15*B

9

Tree Index Measurements

NLeafPgs ~ Fh

So tree height h ~ logF(NLeafPgs) = logF(1.5*B), alt (1)

h ~ logF(NLeafPgs) = logF(.15*B), alt (2)

Search down tree takes time = h*D, assuming nothing in buffer

10

Non-leaf

Pages,

Height h

Pages

(Sorted by search key)

Leaf

Fanout F

Clustered vs. Unclustered Index

 To build clustered index, first sort the heap file, leaving some

free space on each page for future inserts

 Overflow pages may be needed for inserts

 Hence order of data records is close to the sort order

11

Data entries

(Index File)

(Data file)

Data entries

CLUSTERED UNCLUSTERED

Cost of Operations (Page 291)
B=#data pgs, R=#recs/pg, D=disk time, F=fanout

 (a) Scan (b) Equality (c) Range (d) Insert (e) Delete

(1) Heap BD 0.5BD BD 2D Search
+D

(2) Sorted BD Dlog 2B D(log 2 B +
pgs with
match recs)

Search
+ BD

Search
+BD

(3)
Clustered

1.5BD Dlog F 1.5B D(log F 1.5B
+ # pgs w.
match recs)

Search
+ D

Search
+D

(4) Unclust.
Tree index

BD(R+0.15) D(1 +
log F
0.15B)

D(log F
0.15B
+ # pgs w.
match recs)

Search
+ 2D

Search
+ 2D

(5) Unclust.
Hash index

BD(R+0.125
)

2D BD Search
+ 2D

Search
+ 2D

12

Scan of Unclustered tree index

Fig. 8.4 says i/o cost = BD(R+0.15)

But this means actively using the index and

chasing each data entry into the heap.

No serious database does this.

Instead, the database scans the underlying heap,

at cost BD.

Similarly for the unclustered hash index

Tree Indexes

 Tree-structured indexing techniques support efficiently
 range searches

 equality searches

 ISAM:
 Indexed Sequential Access Method, developed by IBM long ago

 Static tree structure

 ISAM has another meaning: An API allowing indexed lookup by key
and next-ing through successive rows/records after the first
lookup.

 B+ tree:
 Dynamic structure

 Adjusts gracefully under inserts and deletes

Tree Indexes Intuition

 How to answer efficiently range query on k?

 Option: store data in sorted file on k and do binary search

 Find first matching record, then scan to find others

 But cost of binary search is high (not to mention inserts)

 Simple idea: Create an index file

 First key value in each data page placed in an index page

Perform binary search on (smaller) index file!

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1
Index File

ISAM

 Index file may still be quite large

 Apply the idea repeatedly on previous index level!

Leaf pages contain data entries

Non-leaf

Pages

Pages

Overflow
page

Primary pages

Leaf

Building an ISAM

 First, create leaf level (data entries)

 Allocate index leaf pages sequential on disk

 Alternative 1 natural choice for ISAM (data records inside data

entries) – this way data are also sequential on disk

 Sequential allocation increases performance of range queries

 Next, create internal (index) nodes

 These will never change after initialization

 Index entries: <search key value, page id>

 direct search for data entries, which are in leaf pages

 Finally, allocate overflow pages

 If needed, when insertions are performed

ISAM Operations

 Search

 Start at root, use keys to guide search towards leaf nodes

 Cost is log F N

 F = # entries/index node page, N = # leaf pages in tree

 Insert

 Find leaf data entry where records belongs

 If no space, create an overflow page

 Delete

 Find and remove from leaf

 If empty overflow page, de-allocate

Static tree structure: inserts/deletes affect only leaf pages!

Does not require locking the internal nodes!

But not available as an access method in any DB, even DB2.

Example ISAM Tree

 Each node can hold 2 entries

 no need for `next-leaf-page’ pointers - Why?

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

These “primary” leaf pages are sequential on disk!

After Inserting 23*, 48*, 41*, 42*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

Then Deleting 42*, 51*, 97*

Note that 51* appears in index levels, but not in leaf!

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

B+ Tree

 Most Widely Used Index

 Dynamic data structure (as opposed to ISAM)

 Tree is height-balanced

 Height is log F N (F = fanout, N = # leaf pages)

 But fanout isn’t really a constant…

 Minimum 50% occupancy constraint

 Each node (except root) contains d <= m <= 2d entries

 Parameter d is called the order of the tree (min fanout)

 Search just like in ISAM

 But insert/delete more complex due to occupancy constraint

 Insert/delete may trigger re-structuring at all levels of tree

B+ Tree Example

 Search begins at root, key comparisons direct it to a leaf

Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

B+ Trees in Practice
 Recall rule d <= m <= 2d,

 Here d = order, m = # entries/page = fanout

 Typical order: 100 (min fanout)
 So max fanout = 2*100 = 200, for full page

 Typical fill-factor: 67%
 Results on average fanout F = .67*200 = 133

 Typical capacities:
 Height 4: 1334 = 312,900,700 leaf pages

 Height 3: 1333 = 2,352,637 leaf pages

 Each leaf page corresponds to .67 page of row data (alt (1)) or 6.7 pages of row
data (alt(2) using 10% size assumption)

 Can often hold top levels in buffer pool: assuming 8KB pages:
 Level 1 = 1 page = 8 KB

 Level 2 = 133 pages = 1 MB

 Level 3 = 17,689 pages = 133 MB

 Level 4 = 2,352,637 pages = 18 GB (probably not in pool)

B+ Tree Example: Insert 8* (d=2)

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

2* 3* 5* 7* 8*

5

Entry to be

inserted in parent
node, “copy-up” 17 24 3013

But root is full!

B+ Tree Example: Insert 8* (d=2)

New root created!

Note that 17 is “pushed up”; contrast

this with “copy-up” for leaf nodes
Push up: deletes key from lower level

and inserts it in upper level

Copy up: key is left at lower level

17 24 30135

5 24 30

17

13

Example B+ Tree After Inserting 8*

Root was split, leading to increase in height

We can avoid split by re-distributing entries, but this is
usually not done in practice for insertions

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

B+ Tree Insertion Algorithm

 Find correct leaf L

 Place data entry in L

 If L has enough space, done!

 Else, must split L (into L and a new node L2)

 Redistribute entries evenly, copy up middle key

 Insert index entry pointing to L2 into parent of L

 This can happen recursively

 To split index node, redistribute entries evenly, but push up

middle key

 Splits “grow” tree; root split increases height.

 Tree growth: gets wider or one level taller at top

B+ Tree Example: Delete 19*, then 20*

Entry re-distribution, middle key is copied up

30

33* 34* 38* 39*22* 24*

27

27* 29*

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

19* does not pose problems,

but 20* creates underflow

Then Delete 24*

 Must merge with sibling

 Index entry 27 is deleted,

due to removal of leaf node
30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root

30135 17

Index node with 30 underflow,

pull down of index key from parent

Non-leaf Re-distribution

 If possible, re-distribute entry from index node sibling

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

135

17

3020 22

Push through the root

B+ Tree Deletion Algorithm

 Start at root, find leaf L where entry belongs

 Remove the entry

 If L is at least half-full, done!

 If L has only d-1 entries

 Try to re-distribute, borrowing from sibling

 If re-distribution fails, merge L and sibling

 If merge occurred, must delete entry from parent of L

 Merge could propagate to root, decreasing height

Bulk Loading of a B+ Tree (d=1)

 Method to efficiently build a tree for first time

 Much better than doing repeated insertions

 Can place pages sequentially on disk

 Sort all data entries, insert pointer to first leaf page in a

new root page

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

Bulk Loading (Contd.)

 Index entries for leaf

pages always entered

into right-most index

page just above leaf

level

 When this fills up, it

splits. (Split may go up

right-most path to the

root)

3* 4* 6* 9* 10*11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages

not yet in B+ tree
3523126

10 20

3* 4* 6* 9* 10* 11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree

Data entry pages

B+ Tree: Prefix Key Compression

 Good I/O performance due to low tree height

 Important to increase fan-out

 Key values in index entries only direct search

 Sometimes keys can be long (e.g., long names)

 It is possible to compress them

 Key Compression Rule

 Each index entry greater than every key value (in any subtree)

to its left

 Insert/delete must be suitably modified

Summary

 Tree-structured indexes are ideal for range-searches, also

good for equality searches.

 ISAM tree is a static structure.

 Only leaf pages modified; overflow pages needed.

 Overflow chains can degrade performance unless size of data

set and data distribution stay constant.

 B+ tree is a dynamic structure.

 Inserts/deletes leave tree height-balanced; log F N cost.

 High fanout (F) means depth rarely more than 3 or 4.

 Almost always better than maintaining a sorted file.

Summary (Contd.)

 Typically, 67% occupancy on average.

 Usually preferable to ISAM; adjusts to growth gracefully.

 But concurrency control (locking) is easier in ISAM

 If data entries are data records, splits can change rids!

 Key compression increases fanout, reduces height.

 Bulk loading can be much faster than repeated inserts for
creating a B+ tree on a large data set.

 Most widely used index in database management systems
because of its versatility. One of the most optimized
components of a DBMS.

