
Hash Indexes: Chap. 11

CS634
Lecture 6, Feb 17 2016

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

HW1 5 #10

 10. For every supplier that only supplies green parts, print the
name of the supplier and the total number of parts that she
supplies.

 Here, clearly need to group by sid

 First look at: suppliers that supply only green parts
 All suppliers except suppliers that supply non-green parts

 Mysql doesn’t implement EXCEPT: not in Entry SQL-92

 So use: all suppliers NOT IN (suppliers that supply non-green parts)

 Select sid from suppliers where sid not in (select sid from catalog c,
parts p where c.pid = p.pid and p.color <> ‘Green’)

select s.sname, count (pid) from suppliers s, catalog c, parts p
where <join conditions> and s.sid in (above query)
group by s.sid, s.sname; --add sname since in select list

HW1 #11
11. For every supplier that supplies a green part and a red part, print the name
and price of the most expensive part that she supplies.

 Need to avoid INTERSECT as well as EXCEPT for mysql
 Suppliers of green parts where sid IN (suppliers of red parts)

 Price of most expensive part for a certain supplier, say sidx:
 Select max(c.cost) from catalog where sid = sidx

 Name of most expensive part for each sid:
 Select c.sid, p.pname from catalog c, parts p where c.pid = p.pid and and c.cost =

(select max(c.cost) from catalog where sid = c.sid);

 Putting it together, using sname (could just use sid here)

select distinct s.sname, p.pname, c.cost from parts p, suppliers s, catalog c

where p.pid=c.pid and s.sid=c.sid and c.cost=

(select max(c1.cost) from catalog c1 where c1.sid=c.sid) and c.sid in

(Suppliers of green parts where sid IN (suppliers of red parts))

HW1 #11, continued

Final query: Using sname (could just use sid here)

select distinct s.sname, p.pname, c.cost from parts p, suppliers s, catalog c

where p.pid=c.pid and s.sid=c.sid and c.cost=

(select max(c1.cost) from catalog c1 where c1.sid=c.sid) and c.sid in

(select c2.sid from catalog c2, parts p2

where c2.pid=p2.pid and p2.color='Red' and c2.sid in

(select c3.sid from catalog c3, parts p3

where c3.pid=p3.pid and p3.color='Green'));

Without the “distinct”, we get two identical rows of output because of a part that

comes in two colors at the same price and with the same part name.

We could use “group by pname” instead or “group by pname, sname”

Note that “group by sid, pid” is not needed, because there is only one row in the big

join for each (sid, pid) pair.

HW 2 Bench Table
 Table of 1M rows, Columns of different “cardinalities”

CREATE TABLE BENCH (

KSEQ integer primary key,

K500K integer not null, K250K integer not null,

K100K integer not null, K40K integer not null,

K10K integer not null, K1K integer not null,

K100 integer not null, K25 integer not null,

K10 integer not null, K5 integer not null,

K4 integer not null, K2 integer not null,

S1 char(8) not null, S2 char(20) not null,

S3 char(20) not null, S4 char(20) not null,

S5 char(20) not null, S6 char(20) not null,

S7 char(20) not null, S8 char(20) not null)

tablespace cs634test storage(initial 1 M next 1 M);

 Column K500K has 500K different values 1, 2, …, 500,000

 Column K2 has 2 different values 1,2 (cardinality 2)

Table Bench is in tablespace cs634test
create tablespace cs634test

datafile '/disk/sd1e/data/oracle-10.1/dbs2/cs63401.dbf'

size 1 G

default storage (initial 1 M next 1 M);

 Shows how a disk file on disk sd1 becomes part of the

database. Oracle makes the file based on this spec.

 Unfortunately, MySQL v. 5.6 does not allow this simple

way of adding a file (v. 5.7 does)

Loading table bench

 First a C program creates a datafile bench.dat:
dbs2(10)% head -3 bench.dat

1 16808 225250 50074 23659 8931 273 45 4 4 5 1 2 12345678
12345678900987654321 12345678900987654321
12345678900987654321 12345678900987654321
12345678900987654321 12345678900987654321
12345678900987654321

2 484493 243043 7988 2504 2328 730 41 13 4 5 2 2 12345678
12345678900987654321 12345678900987654321
12345678900987654321 12345678900987654321
12345678900987654321 12345678900987654321
12345678900987654321

3 129561 70934 93100 279 1817 336 98 2 3 3 3 2 12345678
12345678900987654321 12345678900987654321
12345678900987654321 12345678900987654321
12345678900987654321 12345678900987654321
12345678900987654321

dbs2(11)% pwd (show this is on local disk sd0)

/disk/sd0d/tools/sun4-sos5/cs634test/setq

Then a bulk load
topcat$ more bench.ctl

load data

replace

into table bench

fields terminated by " "

(KSEQ, K500K, K250K, K100K, K40K, K10K, K1K, K100, K25,

K10, K5, K4, K2, S1, S2, S3, S4, S5, S6, S7, S8)

 Note this builds the PK index, not clustered.

 The data file is on disk sd0, the tablespace on disk sd1, so this load
uses both disks at top speed.

 Would be horribly slower if the data file was on networked disk.

 The load took about 10 minutes.

 That’s 210 MB data read in 600 s, or about 350 KB/s read rate.

Then add secondary indexes on some columns

CREATE INDEX k500kin ON bench (k500k)

storage (initial 1 M next 1 M) pctfree 5 tablespace CS634TEST;

COMMIT WORK;

CREATE INDEX k100kin on bench (k100k)

storage (initial 1 M next 1 M) pctfree 5 tablespace CS634TEST

COMMIT WORK;

CREATE INDEX k10kin on bench (k10k)

storage (initial 1 M next 1 M) pctfree 5 tablespace CS634TEST;

COMMIT WORK;

CREATE INDEX k100in on bench (k100)

storage (initial 1 M next 1 M) pctfree 5 tablespace CS634TEST;

COMMIT WORK;

CREATE INDEX k10in on bench (k10)

storage (initial 1 M next 1 M) pctfree 5 tablespace CS634TEST;

COMMIT WORK;

CREATE INDEX k4in on bench (k4)

storage (initial 1 M next 1 M) pctfree 5 tablespace CS634TEST;

COMMIT WORK;

We could make a tablespace on sd0 for these indexes and get better performance for
some queries. This took a minute or so for each index.

Final Steps for Bench Table

Analyze the table to get stats for the query processor

analyze table bench compute statistics

for table for all indexes;

Make it publicly readable:

grant select on table bench to public;

Try it out from another (non-priv) account
dbs2(20)% sqlplus cs636test/…

SQL> select count(*) from eoneil.bench;

COUNT(*)

1000000

SQL> select tablespace_name from all_tables

where table_name = 'BENCH';

TABLESPACE_NAME

CS634TEST

SQL> select index_name,index_type, uniqueness from all_indexes where
table_name='BENCH';

INDEX_NAME INDEX_TYPE UNIQUENES

------------------------------ --------------------------- ---------

SYS_C00549655 NORMAL UNIQUE

K500KIN NORMAL NONUNIQUE

K100KIN NORMAL NONUNIQUE

…

Overview

 Hash-based indexes are best for equality selections

 Cannot support range searches, except by generating all values

 Static and dynamic hashing techniques exist

 Hash indexes not as widespread as B+-Trees

 Some DBMS do not provide hash indexes

 But hashing still useful in query optimizers (DB Internals)

 E.g., in case of equality joins

 As for tree indexes, 3 alternatives for data entries k*

 Choice orthogonal to the indexing technique

Hashing in Memory and on Disk

• The hash table may be located in memory, supporting
fast lookup to records on disk, or even on disk, supporting
fast access to further disk.

• In fact, a disk-resident hash table that is in frequent use
ends up being in memory because of the memory
"caching" of disk pages in the file system.

keys hash table Data records Example

memory memory memory typical HashMap apps

memory memory disk use HashMap to hold disk
record locations as values

memory disk disk hashed files, some
database tables

Static Hashing

 Number of buckets N fixed, each with primary, overflow pages

 primary pages are allocated sequentially

 overflow pages may be needed when file grows

 Buckets contain data entries

 Hash value: h(k) mod N = bucket for data entry with key k

h(key) mod N

h
key

Primary bucket pages Overflow pages

1

0

N-1

Static Hashing

 Hash function is applied on search key field

 Must distribute values over range 0 ... N-1.

 h(key) = (a * key + b) is a typical choice (for numerical keys)

 a and b are constants, chosen to “tune” the hashing, and prime

 Example: h(key) = 37*key + 101

 Hash function for string keys? A tricky subject, easy to go

wrong

 See Wikipedia article https://en.wikipedia.org/wiki/Hash_function

 Algorithm used by Perl:

https://en.wikipedia.org/wiki/Jenkins_hash_function

Data entries can be full rows (Alt (1))

 Primary pages are sequential on disk, so full table scan is fast if
not too many overflow pages, or overflow pages are also
sequential

 Is a clustered index

h(key) mod N

h
key

Primary bucket pages Overflow pages

1

0

N-1

Data entries can be (key, rid(s)) (Alt (2,3))

Requires data sorted in hash-value order

h(key) mod N

h
key

1

0

N-1

pages of Data entries (from above)

(Index File)

(Data file)

CLUSTERED UNCLUSTERED

Static Hashing

 Works well if we know how many keys there can be

 Then we can size the primary page sequence properly: keep it
under about half full

 Can have “collisions”: two keys with same hash value

 But when file grows considerably there are problems

 Long overflow chains develop and degrade performance

 Example: loader took over an hour to load a big program

 Found it was hashing using 1000-spot hash table for global
symbols! One line edit solved the problem.

 General Solution: Dynamic Hashing, 2 contenders described:

 Extendible Hashing

 Linear Hashing

https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Jenkins_hash_function

Extendible Hashing

 Main Idea: when primary page becomes full, double the

number of buckets

 But reading and writing all pages is expensive

 Use directory of pointers to buckets

 Double the directory size, and only split the bucket that just

overflowed!

 Directory much smaller than file, so doubling it is cheap

 There are no overflow pages (unless the same key appears a lot

of times, i.e., very skewed distribution – many duplicates)

Extendible Hashing Example

 Directory is array of size 4

 Directory entry corresponds to last

two bits of hash value

 If h(k) = 5 = binary 101, it is in

bucket pointed to by 01

 Insertion into non-full buckets is

trivial

 Insertion into full buckets requires

split and directory doubling

 E.g., insert h(k)=20

13*00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

14*

Insert h(k)=20 (Causes Doubling)

20*

00

01

10

11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21*13*

32*16*

10*

15* 7* 19*

4* 12*

19*

2

2

2

000

001

010

011

100

101

110

111

3

3

3
DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image'
of Bucket A)

32*

1* 5* 21*13*

16*

10*

15* 7*

4* 20*12*

LOCAL DEPTH

GLOBAL DEPTH

Use last 3 bits

in split bucket!

Global vs Local Depth

 Global depth of directory:

 Max # of bits needed to tell which bucket an entry belongs to

 Local depth of a bucket:

 # of bits used to determine if an entry belongs to this bucket

 When does bucket split cause directory doubling?

 Before insert, local depth of bucket = global depth

 Insert causes local depth to become > global depth

 Directory is doubled by copying it over

 Use of least significant bits enables efficient doubling via copying of
directory

 Delete: if bucket becomes empty, merge with `split image’

 If each directory element points to same bucket as its split image,
can halve directory

Directory Doubling

00

01

10

11

2

Why use least significant bits in directory?
It allows for doubling via copying!

000

001

010

011

3

100

101

110

111

vs.

0

1

1

6*
6*

6*

6 = 110

00

10

01

11

2

3

0

1

1

6*
6*

6*

6 = 110
000

100

010

110

001

101

011

111

Least Significant Most Significant

Extendible Hashing Properties

 If directory fits in memory, equality search answered with

one I/O; otherwise with two I/Os

 100MB file, 100 bytes/rec, 4K pages contains 1,000,000 records

 (That’s 100MB/(100 bytes/rec) = 1M recs)

 25,000 directory elements will fit in memory

 (That’s assuming a bucket is one page, 4KB = 4096 bytes, so can hold

4000 bytes/(100 bytes/rec)= 40 recs, plus 96 bytes of header, so

1Mrecs/(40 recs/bucket) = 25,000 buckets, so 25,000 directory elements)

 Multiple entries with same hash value cause problems!

 These are called collisions

 Cause possibly long overflow chains

Linear Hashing

 Dynamic hashing scheme

 Handles the problem of long overflow chains

 But does not require a directory!

 Deals well with collisions!

Linear Hashing

 Main Idea: use a family of hash functions h0, h1, h2, ...

 hi(key) = h(key) mod(2iN)

 N = initial number of buckets

 If N = 2d0, for some d0, hi consists of applying h and looking at the
last di bits, where di = d0 + i

 hi+1 doubles the range of hi (similar to directory doubling)

 Example:

 N=4, conveniently a power of 2

 hi(key) = h(key)mod(2iN)=h(key), last 2+i bits of key

 h0(key) = last 2 bits of key

 h1(key) = last 3 bits of key

 …

Linear Hashing: Rounds

 During round 0, use h0 and h1

 During round 1, use h1 and h2

 …

 Start a round when some bucket overflows

 (or possibly other criteria, but we consider only this)

 Let the overflow entry itself be held in an overflow chain

 During a round, split buckets, in order from the first

 Do one bucket-split per overflow, to spread out overhead

 So some buckets are split, others not yet, during round.

 Need to track division point: Next = bucket to split next

Overview of Linear Hashing

Levelh

Buckets that existed at the

beginning of this round:

this is the range of

Next

Bucket to be split Levelh (search key value)

(search key value)

Buckets split in this round:

If

is in this range, must use

h Level+1

`split image' bucket.

to decide if entry is in

`split image' buckets:

Note this is a “file”, i.e., contiguous in memory or in a real file.

Linear Hashing Properties

 Buckets are split round-robin

 Splitting proceeds in `rounds’

 Round ends when all NR initial buckets are split (for round R)

 Buckets 0 to Next-1 have been split; Next to NR yet to be split.

 Current round number referred to as Level

 Search for data entry r :

 If hLevel(r) in range `Next to NR’ , search bucket hLevel(r)

 Otherwise, apply hLevel+1(r) to find bucket

Linear Hashing Properties

 Insert:

 Find bucket by applying hLevel or hLevel+1 (based on Next value)

 If bucket to insert into is full:

 Add overflow page and insert data entry.

 Split Next bucket and increment Next

 Can choose other criterion to trigger split

 E.g., occupancy threshold

 Split round-robin prevents long overflow chains

Example of Linear Hashing

 On split, hLevel+1 is used to re-distribute entries.

0
hh

1

Level=0, N=4

00

01

10

11

000

001

010

011

(The actual contents

of the linear hashed

file)

Next=0

PRIMARY

PAGES

Data entry r
with h(r)=5

Primary

bucket page

44* 36*32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

0
hh

1

Level=0

00

01

10

11

000

001

010

011

Next=1

PRIMARY

PAGES

44* 36*

32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

OVERFLOW

PAGES

43*

00100

After inserting 43*

End of a Round

0hh1

22*

00

01

10

11

000

001

010

011

00100

Next=3

01

10

101

110

Level=0

PRIMARY
PAGES

OVERFLOW

PAGES

32*

9*

5*

14*

25*

66* 10*18* 34*

35*31* 7* 11* 43*

44* 36*

37*29*

30*

0hh1

37*

00

01

10

11

000

001

010

011

00100

10

101

110

Next=0

Level=1

111

11

PRIMARY

PAGES
OVERFLOW

PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31*7*

50*

Insert h(x) = 50 = 11010, overflows

010 bucket, 11 bucket splits

Advantages of Linear Hashing

 Linear Hashing avoids directory by:

 splitting buckets round-robin

 using overflow pages

 in a way, it is the same as having directory doubling gradually

 Primary bucket pages are created in order

 Easy in a disk file, though may not be really contiguous

 But hard to allocate huge areas of memory

Summary

 Hash-based indexes: best for equality searches, (almost)

cannot support range searches.

 Static Hashing can lead to long overflow chains.

 Extendible Hashing avoids overflow pages by splitting a full

bucket when a new data entry is to be added to it. (Duplicates

may require overflow pages.)

 Directory to keep track of buckets, doubles periodically.

 Can get large with skewed data; additional I/O if this does not fit in

main memory.

Summary (Contd.)

 Linear Hashing avoids directory by splitting buckets round-

robin, and using overflow pages.

 Overflow pages not likely to be long.

 Duplicates handled easily.

 Space utilization could be lower than Extendible Hashing, since splits

not concentrated on `dense’ data areas in the early part of a round.

 For hash-based indexes, a skewed data distribution is one in

which the hash values of data entries are not uniformly

distributed

 Need a good hash function!

Indexes in Standards

 SQL92/99/03 does not standardize use of indexes

 (BNF for SQL2003)

 But all DBMS providers support it

 X/OPEN actually standardized CREATE INDEX clause

CREATE [UNIQUE] INDEX indexname ON tablename

(colname [ASC | DESC] [,colname [ASC | DESC] ,. . .]);

 ASC|DESC are just there for compatibility, have no effect in

any DB I know of.

 Index has as key the concatenation of column names

 In the order specified

http://savage.net.au/SQL/sql-2003-2.bnf.html

Indexes in Oracle

 Oracle supports mainly B+-Tree Indexes

 These are the default, so just use create index…

 No way to ask for clustered directly

 Clustering on PK is available via index-organized tables (IOTs)

 In this case, the RID is different, affecting secondary index performance

 Also “table cluster” for co-locating data of tables often joined

 Hashing: via “hash cluster”

 Also a form of hash partitioning supported

 Also supports bitmap indexes

 Hash cluster example

Example Oracle Hash Cluster

CREATE CLUSTER trial_cluster (trialno DECIMAL(5,0))

SIZE 1000 HASH IS trialno HASHKEYS 100000;

CREATE TABLE trial (trialno DECIMAL(5,0) PRIMARY KEY, ...)

CLUSTER trial_cluster (trialno);

 SIZE should estimate the max storage in bytes of the rows

needed for one hash key

 Here HASHKEYS <value> specifies a limit on the number of

unique keys in use, for hash table sizing. Oracle rounds up to a

prime, here 100003. This is static hashing.

Oracle Hash Index, continued

 For static hashing in general: rule of thumb—

 Estimate the max possible number of keys and double it. This

way, about half the hash cells are in use at most.

 The hash cluster is a good choice if queries usually

specify an exact trialno value.

 Oracle will also create a B-tree index on trialno

because it is the PK. But it will use the hash index for

equality searches.

MySQL Indexes, for InnoDB Engine

 CREATE [UNIQUE] INDEX index_name [index_type]

ON tbl_name (index_col_name,...)

 index_col_name: col_name [(length)] [ASC | DESC]

 index_type: USING {BTREE | HASH}

 Syntax allows for hash index, but not supported by

InnoDB.

 For InnoDB, index on primary key is clustered.

Clustered index on PK: choose your PK

wisely

 Available in Oracle and MySQL, as only kind of clustered

B-tree index.

 Common PKs are ids, arbitrary, not commonly used in

range queries, so not getting the good from the clustered

B-tree.

 However, a PK is what we say it is for a table, and doesn’t

need to be minimalistic, just a unique identifier.

 So (zipcode, custid) works as a PK and clusters the data

by zipcode. Custid is a “uniquifier” here.

 Then useful range queries on zipcode run fast.

 Typically, data is inserted first, then index is created

 Exception: alternative (1) indexes (of course!)

 Then best to sort first, then load

 How to sort? Use database: load, sort, dump, load for real

 Index bulk-loading is a good idea – recall it is much faster

 Delete an index

DROP INDEX indexname;

 Guidelines:

 Create index if you frequently retrieve less than 15% of the table

 To improve join performance, index columns used for joins

 Small tables do not require indexes, except ones for PKs.

Indexes in Practice

Compare B-Tree and Hash Indexes

 Dynamic Hash tables have variable insert times

 Worst-case access time & best average access time

 But only useful for equality key lookups

 Note there are bitmap indexes too

