
Managing Disk Resources, cont.

CS634
Lecture 8, Feb 24, 2016

These slides are not based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Disk Resource: Find out about disks on topcat

• One way: read the system log as the system comes up

• Linux: the dmesg tool outputs the system log:

…
[1.220567] ata4.00: ATA-7: WDC WD2500JS-75NCB3, 10.02E04, max UDMA/133

[1.220654] ata3.00: ATA-7: WDC WD2500JS-75NCB3, 10.02E04, max UDMA/133

[1.228713] scsi 2:0:0:0: Direct-Access ATA WDC WD2500JS-75N 10.0 PQ: 0
ANSI: 5

[1.229069] scsi 3:0:0:0: Direct-Access ATA WDC WD2500JS-75N 10.0 PQ: 0
ANSI: 5

…

• This show two Western Digital disks (do a web search on WDC WD2500JS-
75NCB3 to find out about them)

• It’s a SATA disk, but that technology is under the SCSI umbrella in the kernel. SCSI
is the older technology, and dbs2’s disks are actual SCSI disks.

• Another way: look at /proc/scsi/scsi, a pseudofile maintained by the kernel, find
same disk description

• We also found the system has 4GB of memory from dmesg and /proc/meminfo.

Partitions in use for filesystems on topcat’s
disks

Use “df –l” to see local filesystems, look for /dev/sd* entries:

topcat$ df -l

Filesystem 1K-blocks Used Available Use% Mounted on

udev 2013052 4 2013048 1% /dev

tmpfs 404784 464 404320 1% /run

/dev/sda1 236049160 6643040 217392452 3% /

… (no more /dev/… entries)

This shows only one disk in use for filesystems, /dev/sda, and only one
partition of it, /dev/sda1.

Partitions on topcat

List all partitions, whether in active use or not:

eoneil@topcat:~/634$ sudo lsblk -o NAME,FSTYPE,SIZE,MOUNTPOINT,LABEL

[sudo] password for eoneil:

NAME FSTYPE SIZE MOUNTPOINT LABEL

sda 232.9G

├─sda1 ext4 228.9G /

├─sda2 1K

└─sda5 swap 4G [SWAP]

sdb 232.9G

└─sdb1 ext2 232.8G

sr0 1024M

• This shows both disks, /dev/sda and /dev/sdb, and the fact that /dev/sda has
two partitions in use:

• /dev/sda1 for the root filesystem (i.e. the whole local filesystem in this case)
• /dev/sda5 for swap space, used by the kernel for virtual memory pages, etc.

• So /dev/sdb is apparently healthy but not in use on this system

MySQL 5.1-5.6/Innodb: just one tablespace

• Global variable (can be set in /etc/mysql/my.cnf)

• innodb_data_home_path gives list of files making up the one
tablespace:

• The default is:
innodb_data_file_path = ibdata1:10M:autoextend

• Here ibdata1 is the filename relative to innodb_data_home_dir (if non-null)
or datadir

• This starts with one 10M file and lets it grow by 8M extensions

Topcat’s mysql (v. 5.6) has datadir = /var/lib/mysql and no setting for
innodb_data_home_dir or innodb_data_file_path

• So our data file is /var/lib/mysql/ibdata1.

• MySQL docs: System globals index

http://dev.mysql.com/doc/refman/5.6/en/dynindex-sysvar.html

MySQL Data files

• topcat$ sudo ls -l /var/lib/mysql

…

drwx------ 2 mysql mysql 4096 May 14 2015 huang001db

drwx------ 2 mysql mysql 4096 Nov 25 08:24 hwangdb

-rw-rw---- 1 mysql mysql 44040192 Feb 23 06:39 ibdata1

-rw-rw---- 1 mysql mysql 50331648 Feb 23 06:39 ib_logfile0

-rw-rw---- 1 mysql mysql 50331648 Feb 8 02:41 ib_logfile1

drwx------ 2 mysql mysql 4096 May 15 2015 indusdb

…

• Here ibdata1 is the data file, and we see two redo log files too.

• Each database has a small directory here, but all the table and index pages
are in the one big file.

Adding a file to the MySQL tablespace

To add /disk2/ibdata2 as a file, we freeze the current datafile by
removing autoextend, specify it with a full path, and add the new file
to the list, with autoextend if desired:

innodb_data_file_path =
/var/lib/mysql/ibdata1:36M;/disk2/ibdata2:50M:autoextend

• Specifically, we bring the server down, change my.cnf, and bring the
server up again.

• See MySQL 5.6 manual, sec. 14.4.1.

• These added file paths may specify software or hardware RAID, or
even raw partitions.

Living with a single tablespace

• With two projects sharing one server, it is common to run two
instances of mysql, one for each project.

• Then each project has its own defined disks

• DBA must add up needed CPU and memory resource needs

• Or be an early adopter of version 5.7…

• Or just buy another server…

Innodb Log files

• The redo log file location is innodb_log_group_home_dir in my.cnf, or
the datadir if this isn’t set (topcat case).

• The undo log is in the main tablespace.

• If you do not specify any InnoDB log variables in my.cnf, the default is
to create two redo log files named ib_logfile0 and ib_logfile1 in the
MySQL data directory.

• To change the redo log location, say onto a mirrored RAID, bring
down the server, which “uses up” the logs in a sense, edit the
location, and bring up the server.

• Best to do this sort of setup as part of database initialization.

Basic Memory Config in MySQL

• Innodb has a buffer pool, size innodb_buffer_pool_size

• The size in bytes of the memory buffer InnoDB uses to cache data
and indexes of its tables. The default value is 128MB (v 5.1-5.6, and in
use on topcat).

• On a dedicated database server, you may set this to up to 80% of the
machine physical memory size.

• But of course not larger than the DB data itself.

• Also raise innodb_log_file_size so total of log file sizes is
innodb_buffer_pool_size (Ref: see innodb_log_file_size docs)

• See mysql manual (v 5.6) sec. 8.10.1 for more on the buffer pool

• With two mysql instances, make that <= 40% each.

• Note: quick way to find physical memory size on a UNIX/Linux
system: use the “top” utility.

Basic Memory Config in Oracle (v 10)

• Two kinds of memory:

• SGA System Global area, including the database buffer caches

• PGA Program Global area, including memory for sorts, hashing,
bitmaps, and bulk loads

• Oracle offers Automatic Shared Memory Management.
• This has two major settable parameters, for the SGA and PGA areas, called

SGA_TARGET and PGA_AGGREGATE_TARGET.

• On a dedicated database server, you may set the sum of these to up
to 80% of the machine physical memory size.

• Could be .6*Mem for SGA, .2*Mem for PGA for example

• Once we get use of dbs3, revisit this for Oracle v. 11.

Oracle Memory Config

• If lots of complex queries or sorting, up the PGA size

• Note that Burleson notes problems with AMM, thinks a good DBA
should take over memory tuning

• But that involves a lot of parameters.

• Most important is overriding ridiculously small default memory sizing

Query Evaluation Overview

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Architecture of a DBMS

14

Data

Disk Space Manager

Buffer Manager

A first course in database systems, 3rd ed, Ullman and Widom

Index/File/Record Manager

Execution Engine

Query Compiler

User
SQL Query

Query Plan (optimized)

Index and Record requests

Page Commands

Read/Write pages

Disk I/O

The two major parts of the DB engine

• QP = query processor, top two boxes on last slide

• Storage manager = rest of boxes

• See “index and record requests” flowing between

• Can be more specific, see list, pg. 283:

• Actions on “files”: file scan, search with equality selection, search
with range selection, insert record, delete record

• Files listed: heap files, sorted files, clustered files, heap file with
unclustered tree index, heap file with unclustered hash index.

• An index on its own is a sorted file.

Where are the tables?

• A table could be held in a heap file with multiple indexes. A file only
has at most one currently relevant index, the one in use.

• The database can use multiple indexes for a single query, but that
would mean the QP first working with (say) two indexes and then
working with the results from that plus the table data file.

• So a file can be a simplification of a table (ignoring all but one of its
indexes, or all of them) or an index itself

• The API can be called an ISAM (in one of its meanings), indexed
sequential access method, allowing scans and lookup, range scan if
tree-based.

Storage Engine API

• If a QP and storage engine hue to an API, then different storage
engines can be “plugged in” to the database

• Example: MS SQL Server can access Excel files via the OLE-DB API.
Also via ODBC.

• That is, there is an Excel OLE-DB “provider” (you don’t need the whole Excel
GUI).

• Example: MySQL has various storage engines—MyISAM and Innodb,
etc.

• New one (Nov ‘12): ClouSE uses Amazon S3 cloud storage. But seems to be a
dead project now. S3 is actively used for backup of mysql data. Can’t just put
the mysql datafile on S3.

Query Evaluation Overview
• SQL query first translated to relational algebra (RA)

• Tree of RA operators, with choice of algorithm among available
implementations for each operator

• Main issues in query optimization
• For a given query, what plans are considered?

• Algorithm to search plan space for cheapest (estimated) plan

• How is the cost of a plan estimated?

• Objective
• Ideally: Find best plan

• Practically: Avoid worst plans!

• We will study the System R approach

Example Schema

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailors

bid name color

101 interlake red

103 clipper green

Boats

Example Query

• Find names of sailors who have rating 10 and who reserved a
red boat.

select sname from sailors s, reserves r, boats b

where s.sid = r.sid and r.bid = b.bid -- join conditions

and s.rating = 10 and b.color = ‘red’

RA: on board: see joins, selection, projection operators

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates)
Boats(bid: integer, name: string, color: string)

Statistics and Catalogs
• To choose an efficient plan, the QP needs information about the relations and

indexes involved

• Catalogs contain information such as:
• Tuple count (NTuples) and page count (NPages) for each relation

• Distinct key value count (NKeys) for each index, INPages

• Index height, low/high key values (Low/High) for each tree index

• Histograms of the values in some fields (optional)

• Catalogs updated periodically
• Updating statistics when data change too expensive

• Approximate information used, slight inconsistency is ok

• Both Oracle and mysql have an “analyze table” command for gathering stats, for use
after a table load or massive update.

• Both Oracle and mysql (v. 5.6+) store stats across DB shutdown/startup and
automatically update them periodically.

Methods for Relational Operator Evaluation
Techniques:

• Indexing
• Choose an index based on conditions in WHERE clause or join conditions

• Scan or Iteration
• Reading a file entirely: file can refer to both data records file or index file

• Partitioning
• Partition the input tuples and replace an expensive operation by similar

operations on smaller inputs

Access Paths
• An access path is a method of retrieving tuples:

• File scan

• Index scan using an index that matches a condition

• A tree index matches (a conjunction of) terms that involve every
attribute in a prefix of the search key

• E.g., tree index on <a, b, c> matches the selection a=5 AND b=3, and a=5 AND b>6, but
not b=3

• A hash index matches (a conjunction of) terms attribute = value for
every attribute in the search key of the index

• E.g., hash index on <a, b, c> matches a=5 AND b=3 AND c=5

• but it does not match b=3, or a=5 AND b=3

Example of matching indexes

Pg. 399: fix error Sailors Reserves on line 8

Reserves (sid: integer, bid: integer, day: dates, rname: string) rname
column added here

with indexes:

• Index1: Hash index on (rname, bid, sid)
• Matches: rname=‘Joe’ and bid = 5 and sid=3
• Doesn’t match: rname=‘Joe’ and bid = 5

• Index2: Tree index on (rname, bid, sid)
• Matches: rname=‘Joe’ and bid = 5 and sid=3
• Matches: rname=‘Joe’ and bid = 5, also rname = ‘Joe’
• Doesn’t match: bid = 5

• Index3: Tree index on (rname)

• Index4: Hash index on (rname)
• These two match any conjunct with rname=‘Joe’ in it

Executing Selections

• Find the most selective access path, retrieve tuples using it
• Then, apply any remaining terms that don’t match the index

• Most selective access path: index or file scan estimated to require the fewest
page I/Os

• Consider day<8/9/94 AND bid=5 AND sid=3

• If we have B+ tree index on day, use that access path
• Then, bid=5 and sid=3 must be checked for each retrieved tuple

• day condition is primary conjunct

• Alternatively, use hash index on <bid, sid> first
• Then, day<8/9/94 must then be checked

Example Schema

• Similar to old schema; rname added–name for the reservation itself

• Makes reserves even more clearly an entity (recall earlier discussion in class 2)

• Reserves:
• 40 bytes long tuple, 100K records, 100 tuples per page, 1000 pages

• Sailors:
• 50 bytes long tuple, 40K tuples, 80 tuples per page, 500 pages

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: date, rname: string)

Using an Index for Selections

• Cost influenced by:
• Number of qualifying tuples

• Whether the index is clustered or not

• Cost of finding qualifying data entries is typically small

• E.g.,

• Assuming uniform distribution of names, 10% of tuples qualify, that is
10000 tuples

• With a clustered index, cost is little more 100 I/Os

• If not clustered, up to10K I/Os!

SELECT *
FROM Reserves R
WHERE R.rname < ‘C%’

Executing Projections

• Expensive part is removing duplicates
• DBMS don’t remove duplicates unless DISTINCT is specified

• Sorting Approach
• Sort on <sid, bid> and remove duplicates

• Cheap if an index with both R.sid and R.bid in the search key exists

• Hashing Approach
• Hash on <sid, bid> to create partitions

• Load partitions into memory one at a time, build in-memory hash structure, and
eliminate duplicates

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

Executing Joins: Index Nested Loops

• Cost = M + (M*pR) * (cost of finding matching S tuples)

• M = number of pages of R, pR = number of R tuples per page

• If relation has index on join attribute, make it inner relation
• For each outer tuple, cost of probing inner index is 1.2 for hash index, 2-4 for B+, plus

cost to retrieve matching S tuples

• Clustered index typically single I/O

• Unclustered index 1 I/O per matching S tuple

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

