Query Evaluation Overview, cont.

Lecture 9 Feb. 29, 2016

Slides based on “Database Management Systems™ 3' ed, Ramakrishnan and Gehrke

Architecture of a DBMS

User

la¥Ya\ |

IaYRV-N2V]
¢ VL JutTYy

[Query Compiler]
I Query Plan (optimized)

Execution Engine

N—— —
‘ Index and Record requests

Index/File/Record Manager

I Page Commands

Buffer Manager
I Read/Write pages

Disk Space Manager

A first course in database systems, 3" ed, Ullman and Widom
2

The two major parts of the DB engine

)
<
<
<
<

QP = query processor, top two boxes on last slide
Storage manager = rest of boxes

See “index and record requests” flowing between
Can be more specific, see list, pg. 283:

Actions on “files”: file scan, search with equality selection,
search with range selection, insert record, delete record

Files listed: heap files, sorted files, clustered files, heap file with
unclustered tree index, heap file with unclustered hash index.
An index on its own is a sorted file.

A file is something that the storage engine can process via an
ISAM-like API

A table can be accessed as a file: pick an index for it (or not)

Storage Engine API

» If a QP and storage engine hue to an AP, then different
storage engines can be “plugged in” to the database

» Example: MS SQL Server can access Excel files via the
OLE-DB API. Also via ODBC.

That is, there is an Excel OLE-DB “provider” (you don’t need
the whole Excel GUI).
» Example: MySQL has various storage engines—MyISAM
and Innodb, etc.

New one (Nov ‘12): ClouSE uses Amazon S3 cloud storage.

MySQL Storage Engine API

Top-level API (subset) from
Note handoff to TABLE object for data actions:

int (*commit)(THD *thd, bool all);

int (*rollback)(THD *thd, bool all);

int (*prepare)(THD *thd, bool all);

int (*recover)(XID *xid_list, uint len);

handler *(*create)(TABLE *table); < next slide
void (*drop_database)(char* path);

bool (*flush_logs)();

https://dev.mysql.com/doc/internals/en/index.html

MySQL Storage Engine API: TABLE API
22.18.1 bas_ext 22.18.14 index_read

22.18.2 close 22.18.15 index_read_idx
22.18.3 create 22.18.16 index_read_|last
22.18.4 delete_row 22.18.17 info

22.18.5 delete_table 22.18.18 open

22.18.6 external_lock 22.18.19 position

22.18.7 extra 22.18.20 records_in_range
22.18.8 index_end 22.18.21 rnd_init

22.18.9 index_first 22.18.22 rnd_next } Table
22.18.10 index_initSetcurrentindex 22.18.23 rnd pos scan

22.18.12 index_next 22.18.25 store_lock
22.18.13 index_prev scan 22.18.26 update_row

22.18.27 write_row |nsert row

22.18.11 index_last 22.18.24 start_stmt
Index

Scan: iteration over rows, see
;"“He'xt" methods

https://dev.mysql.com/doc/internals/en/bas-ext.html
https://dev.mysql.com/doc/internals/en/close.html
https://dev.mysql.com/doc/internals/en/create.html
https://dev.mysql.com/doc/internals/en/delete-row.html
https://dev.mysql.com/doc/internals/en/delete-table.html
https://dev.mysql.com/doc/internals/en/external-lock.html
https://dev.mysql.com/doc/internals/en/extra.html
https://dev.mysql.com/doc/internals/en/index-end.html
https://dev.mysql.com/doc/internals/en/index-first.html
https://dev.mysql.com/doc/internals/en/index-init.html
https://dev.mysql.com/doc/internals/en/index-last.html
https://dev.mysql.com/doc/internals/en/index-next.html
https://dev.mysql.com/doc/internals/en/index-prev.html
https://dev.mysql.com/doc/internals/en/index-read.html
https://dev.mysql.com/doc/internals/en/index-read-idx.html
https://dev.mysql.com/doc/internals/en/index-read-last.html
https://dev.mysql.com/doc/internals/en/info.html
https://dev.mysql.com/doc/internals/en/open.html
https://dev.mysql.com/doc/internals/en/position.html
https://dev.mysql.com/doc/internals/en/records-in-range.html
https://dev.mysql.com/doc/internals/en/rnd-init.html
https://dev.mysql.com/doc/internals/en/rnd-next.html
https://dev.mysql.com/doc/internals/en/rnd-pos.html
https://dev.mysql.com/doc/internals/en/start-stmt.html
https://dev.mysql.com/doc/internals/en/store-lock.html
https://dev.mysql.com/doc/internals/en/update-row.html
https://dev.mysql.com/doc/internals/en/write-row.html

Access Paths

» An access path is a method of retrieving tuples:
File scan (AKA table scan if on a table)

Index scan using an index that matches a condition

» A tree index matches (a conjunction of) terms that involve every
attribute in a prefix of the search key

E.g., tree index on <a, b, c> matches the selection a=5 AND b=3,
and a=5 AND b>6, but not b=3

» A hash index matches (a conjunction of) terms attribute = value
for every attribute in the search key of the index

E.g., hash index on <a, b, c> matches a=5 AND b=3 AND c=5
but it does not match b=3, or a=5 AND b=3

Example of matching indexes

Pg. 399: fix error Sailors=> Reserves on line 8
Reserves (sid: integer, bid: integer, day: dates, rname: string) <
rname column added here
with indexes:
» Index|:Hash index on (rname, bid, sid)
Matches: rname=‘Joe’ and bid = 5 and sid=3
Doesn’t match: rname="‘Joe’ and bid = 5
» Index2:Tree index on (rname, bid, sid)
Matches: rname="Joe’ and bid = 5 and sid=3
Matches: rname=‘Joe’ and bid = 5, also rname = ‘Jo¢’
Doesn’t match: bid =5
» Index3:Tree index on (rname)
» Index4: Hash index on (rname)
These two match any conjunct with rname="‘Joe’ in it

Executing Selections

» Find the most selective access path, retrieve tuples using it
Then, apply any remaining terms that don’t match the index

» Most selective access path: index or file scan estimated to
require the fewest page |/Os

Consider day<8/9/94 AND bid=5 AND sid=3

» If we have B+ tree index on day, use that access path
Then, bid=5 and sid=3 must be checked for each retrieved tuple
day condition is primary conjunct

» Alternatively, use hash index on <bid, sid> first
Then, day<8/9/94 must then be checked

Example Schema

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

» Similar to old schema; rname added

» Reserves:
40 bytes long tuple, 00K records, 4KB pages

So 100K*40 = 4MB data, 4MB/4KB = 1000 pages
Assume 4000 bytes/pg, sol00 tuples per page

» Sailors:
50 bytes long tuple, 40K tuples, 4KB pages
So 80 tuples per page, 500 pages

Using an Index for Selections

» Cost influenced by:
Number of qualifying tuples
Whether the index is clustered or not
Ex: SELECT *
FROM Reserves R
WHERE R.rname <‘C%’
» Assuming uniform distribution of names, 2/26 ~10% of tuples
qualify, that is 10000 tuples (pg.401)
With a clustered index, cost is little more 100 I/Os:
10000*40 = 400KB data, in 100 data pages, plus a few index pgs

If not clustered, up to10K I/Os!

About 10000 data pages accessed, each with own I/O (unless big enough
buffer pool)

Better to do a table scan: 1000 pages, so 1000 I/Os.

Executing Projections

» Expensive part is removing duplicates
DBMS don’t remove duplicates unless DISTINCT is specified

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

» Sorting Approach
Sort on <sid, bid> (or <bid, sid>) and remove duplicates
Avoidable if an index with R.sid and R.bid in the search key exists
» Hashing Approach
Hash on <sid, bid> to create partitions (buckets)

Load partitions into memory one at a time, build in-memory hash
structure, and eliminate duplicates

Executing Joins: Index Nested Loops

foreach tuple r in R do
foreach tuple s in S where r; ==s; do
add <r, s> to result

Cost = (M*pR) * (cost of finding matching inner-table tuples)
M = number of pages of R, pg = number of R tuples per page

» If relation has index on join attribute, make it inner relation

For each outer tuple, cost of probing inner index is 1.2 for hash
index, 2-4 for B+, plus cost to retrieve matching S tuples

Clustered index typicaty-single HO- no more /O (unless many

matching S tuples)
Unclustered index | I/O per matching S tuple

Duplicate keys in indexes

» B trees: see Sec. 10.7 Duplicates: two ways to go—
I”

Overflow pages, but not “typica
Just sequential entries with the same key (we’ll assume this)

» Extendible Hashing: uses overflow pages (pg. 379)

» Linear Hashing: uses multiple entries in the main pages.

May involve “extra” overflow pages, since splitting doesn’t help
with a long sequence of same-key entries.

» Shouldn’t use a hash index on a low-cardinality column. B-
tree is OK (esp. Alt. 3). (Bitmap index is best.)

» Cost of access for all dups of one key: calculate number
of pages of duplicate index entries

Example of Index Nested Loops (1/2)

Example: Reserves JOIN Sailors (natural join on sid)
Case |: Hash-index (Alternative 2) on sid of Sailors
» Choose Sailors as inner relation

» Scan Reserves: 100K tuples, 1000 page 1/Os

» For each Reserves tuple
1.2 I/Os to get data entry in index (see pg.412)
1 1/O to get (the exactly one) matching Sailors tuple (primary key)

» Total: 221,000 I/Os

Example of Index Nested Loops (2/2)

Example: Reserves JOIN Sailors (natural join on sid)

Case 2: Hash-index (Alternative | or 2) on sid of Reserves
» Choose Reserves as inner

» Scan Sailors: 40K tuples, 500 page I/Os

» For each Sailors tuple
1.2 1/Os to find index page with data entries
Assuming uniform distribution, 2.5 matching records per sailor

Cost of retrieving records is nothing further (Alt. |, clustered) or
2.51/0Os (Alt.2)

» Total: 88,500 I/Os (clustered) or 148,500 1/Os (unclustered

Executing Joins: Sort-Merge

» Sort R and S on the join column

Then scan them to do a merge on join column
» R is scanned once

» Each S group is scanned once per matching R tuple

Multiple scans per group needed only if S records with same join
attribute value span multiple pages

Multiple scans of an S group are likely to find needed pages in
buffer

» Cost: MlogM + N log N + (M+N)

The cost of scanning, M+N, could be M*N worst case (very
unlikely!)

System R Optimizer
» Developed at IBM starting in the 1970’s

Most widely used currently; works well for up to 10 joins

» Cost estimation
Statistics maintained in system catalogs
Used to estimate cost of operations and result sizes

Considers combination of CPU and I/O costs

» Query Plan Space
Only the space of left-deep plans is considered

Cartesian products avoided

Left Deep Trees

» Consider nested-loop joins
» Inner tables need to be materialized because they are
probed repeatedly for each row of the outer table

Materialized means available as a table, not just a stream of
rows, so can be probed by PK index.

» Left table = outer table

» Left table can be pipelined: rows used one at a time in
order (i.e., doesn’t need to be materialized)

» So Left-deep plans allow output of each operator to be
pipelined into the next operator without storing it in a
temporary relation

i.e., Left Deep trees can be “fully pipelined”

Example of join with left table
pipelined and right table materialized

(On-the-fly)

sSname

Urating -5 (On-the-fly)

%
W |
.Q®
Q >><1 (Index Nested Loops,
sid=sid with pipelining)
/ \ (Use hash
(pse hash O-bid=100 Sailors Index)

index; do
not write
result to

Cost Estimation

For each plan considered, must estimate:

» Cost of each operator in plan tree
Depends on input cardinalities
Operation and access type: sequential scan, index scan, joins

» Size of result for each operation in tree
Use information about the input relations

For selections and joins, assume independence of predicates

Size Estimation and Reduction Factors

SELECT attribute list
FROM relation list
WHERE term; AND ... AND term,

» Maximum number of tuples is cardinality of cross product

» Reduction factor (RF) associated with each term reflects its
impact in reducing result size
Implicit assumption that terms are independent!
col = value has RF =1/NKeys(/), given index | on col
coll = col2 has RF = 1/max(NKeys(/1), NKeys(/2))
col > value has RF = (High(l)-value)/(High(l)-Low(!))

Example Schema

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

» Similar to old schema; rname added

» Reserves:
40 bytes long tuple, 00K records, 100 tuples per page, 1000 pages

» Sailors:
50 bytes long tuple, 40K tuples, 80 tuples per page, 500 pages

Evaluation Example

SELECT S.sname

FROM Reserves R, Sailors S

WHERE R.sid=S.sid AND
R.bid=100 AND S.rating>5

Cost: 1000+500*1000 1/Os

» By no means the worst plan!

» Misses several opportunities:

Selections could have been
‘pushed’ earlier

No use of any available indexes

Plan:
(On-the-fly)

sSname

O—bid=100/\ rating>5 (On-the-fly)

> (Simple Nested
sid=sid Loops)

N

Reserves Sailors

Alternative Plan 1 (No Indexes)

T (On-the-fly)

sShame

> (Sort-Merge Join)

sid=sid
(Scan;) (Scan;
write to GbidleO rating>5 write to
temp T1) temp T2)

Reserves Sailors

Alternative Plan 1 (No Indexes)

» Main difference: push down selections

» Scan Reserves (1000) + write temp T (10 pages, if we
have 100 boats, uniform distribution)

» Scan Sailors (500) + write temp T2 (250 pages, if we
have |0 ratings)
» Sort-merge join T| and T2
Assume there are 5 buffers:
Sort T1 (2%2%10), Sort T2 (2%4*250), Merge (10+250)
Total: 4060 page |/Os

Alternative Plan 2 (With Indexes)

(Use hash
index; do
not write
result to
temp)

(On-the-fly)

sSname

Cating > 5 (On-the-fly)

>< (Index Nested Loops,
sid=sid with pipelining)

N

O-bid=100

(Use hash

Sailors Index)

Reserves

Alternative Plan 2 (With Indexes)

» With clustered index on bid of Reserves, we get 100,000/100 =
1000 tuples on 1000/100 = 10 pages

» Inner Nested Loop join with pipelining (result not materialized)
» Join column sid is a key for Sailors
At most one matching tuple, unclustered index on sid OK

» Decision not to push rating>5 before the join is based on
availability of sid index on Sailors

» Cost:
Selection of Reserves tuples 10 1/Os

For each, must get matching Sailors tuple (1000*1.2)
Total 1210 1/Os

Summary

» There are several alternative evaluation algorithms for each relational
operator.

» A query is evaluated by converting it to a tree of operators and
evaluating the operators in the tree.

» Must understand query optimization in order to fully understand the
performance impact of a given database design (relations, indexes) on
a workload (set of queries).
» Two parts to optimizing a query:
Consider a set of alternative plans.
Must prune search space; typically, left-deep plans only.
Must estimate cost of each plan that is considered.

Must estimate size of result and cost for each plan node.

Key-issues: Statistics, indexes, operator implementations.

