
Query Evaluation Overview, cont.

Lecture 9 Feb. 29, 2016

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Architecture of a DBMS

Data

Disk Space Manager

Buffer Manager

A first course in database systems, 3rd ed, Ullman and Widom

Index/File/Record Manager

Execution Engine

Query Compiler

User
SQL Query

Query Plan (optimized)

Index and Record requests

Page Commands

Read/Write pages

Disk I/O

2

The two major parts of the DB engine

 QP = query processor, top two boxes on last slide

 Storage manager = rest of boxes

 See “index and record requests” flowing between

 Can be more specific, see list, pg. 283:

 Actions on “files”: file scan, search with equality selection,
search with range selection, insert record, delete record

 Files listed: heap files, sorted files, clustered files, heap file with
unclustered tree index, heap file with unclustered hash index.
An index on its own is a sorted file.

 A file is something that the storage engine can process via an
ISAM-like API

 A table can be accessed as a file: pick an index for it (or not)

Storage Engine API

 If a QP and storage engine hue to an API, then different

storage engines can be “plugged in” to the database

 Example: MS SQL Server can access Excel files via the

OLE-DB API. Also via ODBC.

 That is, there is an Excel OLE-DB “provider” (you don’t need

the whole Excel GUI).

 Example: MySQL has various storage engines—MyISAM

and Innodb, etc.

 New one (Nov ‘12): ClouSE uses Amazon S3 cloud storage.

MySQL Storage Engine API

Top-level API (subset) from internals manual

Note handoff to TABLE object for data actions:

int (*commit)(THD *thd, bool all);

int (*rollback)(THD *thd, bool all);

int (*prepare)(THD *thd, bool all);

int (*recover)(XID *xid_list, uint len);

handler *(*create)(TABLE *table); next slide

void (*drop_database)(char* path);

bool (*flush_logs)();

https://dev.mysql.com/doc/internals/en/index.html

MySQL Storage Engine API: TABLE API
22.18.1 bas_ext

22.18.2 close

22.18.3 create

22.18.4 delete_row

22.18.5 delete_table

22.18.6 external_lock

22.18.7 extra

22.18.8 index_end

22.18.9 index_first

22.18.10 index_init

22.18.11 index_last

22.18.12 index_next

22.18.13 index_prev

22.18.14 index_read

22.18.15 index_read_idx

22.18.16 index_read_last

22.18.17 info

22.18.18 open

22.18.19 position

22.18.20 records_in_range

22.18.21 rnd_init

22.18.22 rnd_next

22.18.23 rnd_pos

22.18.24 start_stmt

22.18.25 store_lock

22.18.26 update_row

22.18.27 write_row

Index

scan

Table

scan

Insert row
Scan: iteration over rows, see

“next’ methods

Set current index

https://dev.mysql.com/doc/internals/en/bas-ext.html
https://dev.mysql.com/doc/internals/en/close.html
https://dev.mysql.com/doc/internals/en/create.html
https://dev.mysql.com/doc/internals/en/delete-row.html
https://dev.mysql.com/doc/internals/en/delete-table.html
https://dev.mysql.com/doc/internals/en/external-lock.html
https://dev.mysql.com/doc/internals/en/extra.html
https://dev.mysql.com/doc/internals/en/index-end.html
https://dev.mysql.com/doc/internals/en/index-first.html
https://dev.mysql.com/doc/internals/en/index-init.html
https://dev.mysql.com/doc/internals/en/index-last.html
https://dev.mysql.com/doc/internals/en/index-next.html
https://dev.mysql.com/doc/internals/en/index-prev.html
https://dev.mysql.com/doc/internals/en/index-read.html
https://dev.mysql.com/doc/internals/en/index-read-idx.html
https://dev.mysql.com/doc/internals/en/index-read-last.html
https://dev.mysql.com/doc/internals/en/info.html
https://dev.mysql.com/doc/internals/en/open.html
https://dev.mysql.com/doc/internals/en/position.html
https://dev.mysql.com/doc/internals/en/records-in-range.html
https://dev.mysql.com/doc/internals/en/rnd-init.html
https://dev.mysql.com/doc/internals/en/rnd-next.html
https://dev.mysql.com/doc/internals/en/rnd-pos.html
https://dev.mysql.com/doc/internals/en/start-stmt.html
https://dev.mysql.com/doc/internals/en/store-lock.html
https://dev.mysql.com/doc/internals/en/update-row.html
https://dev.mysql.com/doc/internals/en/write-row.html

Access Paths

 An access path is a method of retrieving tuples:

 File scan (AKA table scan if on a table)

 Index scan using an index that matches a condition

 A tree index matches (a conjunction of) terms that involve every

attribute in a prefix of the search key

 E.g., tree index on <a, b, c> matches the selection a=5 AND b=3,

and a=5 AND b>6, but not b=3

 A hash index matches (a conjunction of) terms attribute = value

for every attribute in the search key of the index

 E.g., hash index on <a, b, c> matches a=5 AND b=3 AND c=5

 but it does not match b=3, or a=5 AND b=3

Example of matching indexes
Pg. 399: fix error Sailors Reserves on line 8

Reserves (sid: integer, bid: integer, day: dates, rname: string)
rname column added here

with indexes:

 Index1: Hash index on (rname, bid, sid)
 Matches: rname=‘Joe’ and bid = 5 and sid=3

 Doesn’t match: rname=‘Joe’ and bid = 5

 Index2: Tree index on (rname, bid, sid)
 Matches: rname=‘Joe’ and bid = 5 and sid=3

 Matches: rname=‘Joe’ and bid = 5, also rname = ‘Joe’

 Doesn’t match: bid = 5

 Index3: Tree index on (rname)

 Index4: Hash index on (rname)
 These two match any conjunct with rname=‘Joe’ in it

Executing Selections

 Find the most selective access path, retrieve tuples using it

 Then, apply any remaining terms that don’t match the index

 Most selective access path: index or file scan estimated to
require the fewest page I/Os

 Consider day<8/9/94 AND bid=5 AND sid=3

 If we have B+ tree index on day, use that access path

 Then, bid=5 and sid=3 must be checked for each retrieved tuple

 day condition is primary conjunct

 Alternatively, use hash index on <bid, sid> first

 Then, day<8/9/94 must then be checked

Example Schema

 Similar to old schema; rname added

 Reserves:

 40 bytes long tuple, 100K records, 4KB pages

 So 100K*40 = 4MB data, 4MB/4KB = 1000 pages

 Assume 4000 bytes/pg, so100 tuples per page

 Sailors:

 50 bytes long tuple, 40K tuples, 4KB pages

 So 80 tuples per page, 500 pages

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Using an Index for Selections

 Cost influenced by:

 Number of qualifying tuples

 Whether the index is clustered or not

 Ex:

 Assuming uniform distribution of names, 2/26 ~10% of tuples
qualify, that is 10000 tuples (pg. 401)

 With a clustered index, cost is little more 100 I/Os:

 10000*40 = 400KB data, in 100 data pages, plus a few index pgs

 If not clustered, up to10K I/Os!

 About 10000 data pages accessed, each with own I/O (unless big enough
buffer pool)

 Better to do a table scan: 1000 pages, so 1000 I/Os.

SELECT *
FROM Reserves R
WHERE R.rname < ‘C%’

Executing Projections

 Expensive part is removing duplicates

 DBMS don’t remove duplicates unless DISTINCT is specified

 Sorting Approach

 Sort on <sid, bid> (or <bid, sid>) and remove duplicates

 Avoidable if an index with R.sid and R.bid in the search key exists

 Hashing Approach

 Hash on <sid, bid> to create partitions (buckets)

 Load partitions into memory one at a time, build in-memory hash

structure, and eliminate duplicates

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

Executing Joins: Index Nested Loops

 Cost = (M*pR) * (cost of finding matching inner-table tuples)

 M = number of pages of R, pR = number of R tuples per page

 If relation has index on join attribute, make it inner relation

 For each outer tuple, cost of probing inner index is 1.2 for hash
index, 2-4 for B+, plus cost to retrieve matching S tuples

 Clustered index typically single I/O no more I/O (unless many
matching S tuples)

 Unclustered index 1 I/O per matching S tuple

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

Duplicate keys in indexes

 B trees: see Sec. 10.7 Duplicates: two ways to go—

 Overflow pages, but not “typical”

 Just sequential entries with the same key (we’ll assume this)

 Extendible Hashing: uses overflow pages (pg. 379)

 Linear Hashing: uses multiple entries in the main pages.

 May involve “extra” overflow pages, since splitting doesn’t help

with a long sequence of same-key entries.

 Shouldn’t use a hash index on a low-cardinality column. B-

tree is OK (esp. Alt. 3). (Bitmap index is best.)

 Cost of access for all dups of one key: calculate number

of pages of duplicate index entries

Example of Index Nested Loops (1/2)

Example: Reserves JOIN Sailors (natural join on sid)

Case 1: Hash-index (Alternative 2) on sid of Sailors

 Choose Sailors as inner relation

 Scan Reserves: 100K tuples, 1000 page I/Os

 For each Reserves tuple

 1.2 I/Os to get data entry in index (see pg. 412)

 1 I/O to get (the exactly one) matching Sailors tuple (primary key)

 Total: 221,000 I/Os

Example of Index Nested Loops (2/2)

Example: Reserves JOIN Sailors (natural join on sid)

Case 2: Hash-index (Alternative 1 or 2) on sid of Reserves

 Choose Reserves as inner

 Scan Sailors: 40K tuples, 500 page I/Os

 For each Sailors tuple

 1.2 I/Os to find index page with data entries

 Assuming uniform distribution, 2.5 matching records per sailor

 Cost of retrieving records is nothing further (Alt. 1, clustered) or

2.5 I/Os (Alt. 2)

 Total: 88,500 I/Os (clustered) or 148,500 I/Os (unclustered

Executing Joins: Sort-Merge

 Sort R and S on the join column

 Then scan them to do a merge on join column

 R is scanned once

 Each S group is scanned once per matching R tuple

 Multiple scans per group needed only if S records with same join

attribute value span multiple pages

 Multiple scans of an S group are likely to find needed pages in

buffer

 Cost: M log M + N log N + (M+N)

 The cost of scanning, M+N, could be M*N worst case (very

unlikely!)

System R Optimizer

 Developed at IBM starting in the 1970’s

 Most widely used currently; works well for up to 10 joins

 Cost estimation

 Statistics maintained in system catalogs

 Used to estimate cost of operations and result sizes

 Considers combination of CPU and I/O costs

 Query Plan Space

 Only the space of left-deep plans is considered

 Cartesian products avoided

Left Deep Trees

 Consider nested-loop joins

 Inner tables need to be materialized because they are
probed repeatedly for each row of the outer table

 Materialized means available as a table, not just a stream of
rows, so can be probed by PK index.

 Left table = outer table

 Left table can be pipelined: rows used one at a time in
order (i.e., doesn’t need to be materialized)

 So Left-deep plans allow output of each operator to be
pipelined into the next operator without storing it in a
temporary relation

i.e., Left Deep trees can be “fully pipelined”

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash

index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

Example of join with left table

pipelined and right table materialized

(Use hash

Index)

Cost Estimation

For each plan considered, must estimate:

 Cost of each operator in plan tree

 Depends on input cardinalities

 Operation and access type: sequential scan, index scan, joins

 Size of result for each operation in tree

 Use information about the input relations

 For selections and joins, assume independence of predicates

Size Estimation and Reduction Factors

 Maximum number of tuples is cardinality of cross product

 Reduction factor (RF) associated with each term reflects its

impact in reducing result size

 Implicit assumption that terms are independent!

 col = value has RF =1/NKeys(I), given index I on col

 col1 = col2 has RF = 1/max(NKeys(I1), NKeys(I2))

 col > value has RF = (High(I)-value)/(High(I)-Low(I))

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Example Schema

 Similar to old schema; rname added

 Reserves:

 40 bytes long tuple, 100K records, 100 tuples per page, 1000 pages

 Sailors:

 50 bytes long tuple, 40K tuples, 80 tuples per page, 500 pages

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Evaluation Example

Cost: 1000+500*1000 I/Os

 By no means the worst plan!

 Misses several opportunities:

 Selections could have been

`pushed’ earlier

 No use of any available indexes

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested

Loops)

(On-the-fly)

(On-the-fly)
Plan:

Alternative Plan 1 (No Indexes)

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

 Main difference: push down selections

 Scan Reserves (1000) + write temp T1 (10 pages, if we

have 100 boats, uniform distribution)

 Scan Sailors (500) + write temp T2 (250 pages, if we

have 10 ratings)

 Sort-merge join T1 and T2

 Assume there are 5 buffers:

 Sort T1 (2*2*10), Sort T2 (2*4*250), Merge (10+250)

 Total: 4060 page I/Os

Alternative Plan 1 (No Indexes)

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash

index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

Alternative Plan 2 (With Indexes)

(Use hash

Index)

 With clustered index on bid of Reserves, we get 100,000/100 =

1000 tuples on 1000/100 = 10 pages

 Inner Nested Loop join with pipelining (result not materialized)

 Join column sid is a key for Sailors

 At most one matching tuple, unclustered index on sid OK

 Decision not to push rating>5 before the join is based on

availability of sid index on Sailors

 Cost:

 Selection of Reserves tuples 10 I/Os

 For each, must get matching Sailors tuple (1000*1.2)

 Total 1210 I/Os

Alternative Plan 2 (With Indexes)

Summary

 There are several alternative evaluation algorithms for each relational

operator.

 A query is evaluated by converting it to a tree of operators and

evaluating the operators in the tree.

 Must understand query optimization in order to fully understand the

performance impact of a given database design (relations, indexes) on

a workload (set of queries).

 Two parts to optimizing a query:

 Consider a set of alternative plans.

 Must prune search space; typically, left-deep plans only.

 Must estimate cost of each plan that is considered.

 Must estimate size of result and cost for each plan node.

 Key issues: Statistics, indexes, operator implementations.

