
External Sorting

CS634
Lecture 10, Mar 2, 2016

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Why is Data Sorting Important?

 Data requested in sorted order

 e.g., find students in increasing gpa order

 Sorting is first step in bulk loading B+ tree index

 Sorting useful for eliminating duplicate copies

 Needed for set operations, DISTINCT operator

 Sort-merge join algorithm involves sorting

 Problem: sort 1Gb of data with 1MB of RAM, or 10MB

 Sort is given a memory budget, can use temp disk as needed

 Focus is minimizing I/O, not computation as in internal sorting

2-Way Sort: Requires 3 Buffers

 Pass 1: Read a page, sort it, write it

 only one buffer page is used

 Pass 2, 3, …, etc.:

 three buffer pages used

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

Two-Way External Merge Sort
Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

Two-Way External Merge Sort

 Each pass we read + write each page in file.

 Number of pages N in the file determines number of passes

Ex: N = 7, round up to power-of-two 8 = 23, #passes = 4 (last slide)

Here 3 = log2 8 = ceiling(log2 7), so 4 = ceiling(log2 N) + 1

 Total number of passes is, using ceiling notation:

 Total cost is: write & read all N pages for each pass:

  1log 2 N

  1log2 2 NN

General External Merge Sort

 To sort a file with N pages using B buffer pages:

 Pass 0: use B buffer pages. Produce sorted runs of B pages

each.

 Pass 2, …, etc.: merge B-1 runs.

 N B/

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.

More than 3 buffer pages. How can we utilize them?

Pipelined Sort Engine

 How it works: stream of tuples in, stream of tuples out:

 Initialize/create sort object: given B, number memory buffers

 Put_tuple, put_tuple, put_tuple,… add data

 Get_tuple: hangs for a while, returns first sorted tuple

 Get_tuple, get_tuple, … rest of sorted tuples

 Done!

 The sort doesn’t need to know how many tuples will be added!

 It just fills B buffers, sorts, outputs run, fills again, …

 When it sees get_tuple, it does know how much data is involved,
can plan a multi-pass sort if needed.

 This possibility of pipelined sort is mentioned on pg. 496, but usually
the authors assume file-to-file sort

 This adds write N, read N to the plan, 2N to cost.

Cost of External Merge Sort, as on pg. 427,
with yellow over over-simplistic conclusion: see next

slide

 Example: with 5 buffer pages, sort 108 page file:
 Pass 0: = 22 sorted runs of 5 pages each (last run is only 3

pages)

 Pass 1: = 6 sorted runs of 20 pages each (last run is only 8
pages)

 Pass 2: ceiling(6/4) = 2 sorted runs, 80 pages and 28 pages

 Pass 3: Merge 2 runs to produce sorted file of 108 pages

Note 22 rounds up to power-of-4 64 = 43 so we see 3 passes of merging
using (up to) 4 input runs, each with one input buffer.

3 = ceiling(log4 22) where 4 = B-1 and 22 = ceiling(N/B)

plus the initial pass, so 4 passes in all.

 Number of passes:

 Cost = 2N * (# of passes) = 2*108*4 i/os

 This cost assumes the data is read from an input file and written to
another output file, and this i/o is counted

  1 1 log /B N B

 108 5/

 22 4/

Cost of External Merge Sort
 Example: with 5 buffer pages, sort 108 page file:

 Pass 0: ceiling(108/4) = 22 sorted runs of 5 pages each (last run is only 3 pages)

 Pass 1: ceiling(22/4) = 6 sorted runs of 20 pages each (last run is only 8 pages)

 Pass 2: ceiling(6/4) = 2 sorted runs, 80 pages and 28 pages

 Pass 3: Merge 2 runs into sorted file of 108 pages

Note 22 rounds up to power-of-4 64 = 43 so we see 3 passes of merging using (up
to) 4 input runs, each with one input buffer.

3 = ceiling(log4 22) where 4 = B-1 and 22 = ceiling(N/B)

plus the initial pass, so 4 passes in all.

 Number of passes:

 But the passes are not always all the same size: look at writes and reads
over whole run (including any reading input from a file and/or writing the
output of the sort to a file, if not pipelined)
 [Read N],write N, read N, write N, read N, write N, read N, [write N]

 The bracketed amounts depend on whether or not the data is read from a file at
the start and written to a file at the end, or pipelined in and/or out.

 That’s 6N, 7N, or 8N i/os, not always the 8N as given in the book’s formula

 Cost = N * (# of read/writes of N) = 2N(#passes - 1) up to 2N(#passes)

  1 1 log /B N B

Cost of External Merge Sort, bigger file
 Number of passes:

 Cost = 2N * (# of passes)

 Example: with 5 buffer pages, sort 250 page file, including reading the
input data from a file and writing the output data to another file.
 Pass 0: ceiling(250/5) = 50 sorted runs of 5 pages each

 Pass 1: ceiling(50/4) = 13 sorted runs of 20 pages each (last run is only
10 pages)

 Pass 2: ceiling(13/4) = 4 sorted runs, 80 pages and 10 pages

 Pass 3: Sorted file of 250 pages

Note 50 again rounds up to power-of-4 64 = 43 so we see 3 passes of
merging using (up to) 4 input runs, plus the initial pass, so 4 passes again

Cost = 2*250*4 i/os

But 50 is getting up in the vicinity of 64, where we start needing another
pass

  1 1 log /B N B

Number of Passes of External Sort

 N B=3 B=5 B=9 B=17 B=129 B=257

100 7 4 3 2 1 1

1,000 10 5 4 3 2 2

10,000 13 7 5 4 2 2

100,000 17 9 6 5 3 3

1,000,000 20 10 7 5 3 3

10,000,000 23 12 8 6 4 3

100,000,000 26 14 9 7 4 4

1,000,000,000 30 15 10 8 5 4

Example of a Blocked I/O Sort

Example: N=1M blocks, B=5000 blocks memory for sort

Use 32 blocks in a big buffer, so have 5000/32 = 156 big buffers

File is 1M/32 = 31250 big blocks

 Pass 0: sort using 156 big buffers to first runs: get

ceiling(31250/156) = 201 runs

 Pass 1: merge using 155 big buffers to 2 runs

 Pass 2: merge 2 runs to final result

See 3 passes here, vs. 2 using “optimized” sort, pg. 431

 Cost = 2N*3 = 6N, vs. 4N using ordinary blocks

 But I/O is 4ms vs. (5/32)ms, so 6*(5/32)=1 vs. 4*4 = 16, a win.

Prefetching to speed up reading

 To reduce wait time for I/O request to complete, can

prefetch into `shadow block’

 Potentially, more passes; in practice, most files still sorted in

2-3 passes

OUTPUT

OUTPUT'

Disk Disk

INPUT 1

INPUT k

INPUT 2

INPUT 1'

INPUT 2'

INPUT k'

block size
b

B main memory buffers, k-way merge

Prefetching, tuning i/o

 Note this is a general algorithm, not just for sorting

 Can be used for table scans too

 Database have I/O related parameters

 Oracle:

 DB_FILE_MULTIBLOCK_READ_COUNT

 Says how many blocks to read at once in a table scan

Using B+ Trees for Sorting

 Scenario: Table to be sorted has B+ tree index on sorting

column(s).

 Idea: Can retrieve records in order by traversing leaf pages.

 Is this a good idea?

 Cases to consider:

 B+ tree is clustered Good idea!

 B+ tree is not clustered Could be a very bad idea!

(Already existent) Clustered B+ Tree

Used for Sorting

 Cost: root to the left-most

leaf, then retrieve all leaf

pages (Alternative 1)

 If Alternative 2 is used,

additional cost of

retrieving data records:

each page fetched just

once

Always better than external sorting!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

Unclustered B+ Tree Used for Sorting

 Alternative (2) for data entries; each data entry

contains rid of a data record. In general, one I/O per

data record!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

External Sorting vs. Unclustered Index

N Sorting p=1 p=10 p=100

100 200 100 1,000 10,000

1,000 2,000 1,000 10,000 100,000

10,000 40,000 10,000 100,000 1,000,000

100,000 600,000 100,000 1,000,000 10,000,000

1,000,000 8,000,000 1,000,000 10,000,000 100,000,000

10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000

• p: # of records per page (p=100 is the more realistic value)
• B=1,000 and block size=32 for sorting
• Assumes the blocks are never found in the buffer pool

Sorting Records: Benchmarks

 Parallel sorting benchmarks/competitions exist in practice

 Datamation: Sort 1M records of size 100 bytes
 Typical DBMS: 15 minutes

 World record: 3.5 seconds (circa1997)
 12-CPU SGI machine, 96 disks, 2GB of RAM

 2001: .48 sec. at UW (most recent I could find)

 Oracle on dbs2: 3 min. using default settings, 24MB for PGA.

 Newer benchmarks:
 Minute Sort: How many TB can you sort in 1 minute?

2015: 7.7TB, using general purpose sort code on a system with 3,134
nodes each with 2 Xeon cores and 96GB memory) and … at Alibaba
Group Inc.

 Cloud Sort: How much in USD to sort 100 TB using a public cloud

2015: $451 on 330 Amazon EC2 r3.4xlarge nodes, by profs at UCSD.

Oracle on dbs2: 3 min to sort 1M records

 In roughly 100MB of data (actually 78MB)

 Suppose Oracle allots 1MB for this sort

 Then 100MB/1MB = 100 runs in pass 0

 1MB/8KB = 128 pages of buffer (B=128)

 So pass 1 merges 100 runs into final sorted output

 The DB reads/writes the 100MB twice, then the output is

saved in the filesystem (faster, ignore for now)

 200MB/8KB = 25K i/o, at about 100 i/o/s

 25Ki/os/(100 i/os/s) = 250 s = 4 min

 Works out, so probably right # passes.

Summary

 External sorting is important; DBMS may dedicate part of

buffer pool for sorting! Oracle: separate memory area

 External merge sort minimizes disk I/O cost:

 Pass 0: Produces sorted runs of size B (# buffer pages). Later

passes: merge runs.

 # of runs merged at a time depends on B, and block size.

 Larger block size means less I/O cost per page.

 Larger block size means smaller # runs merged.

 In practice, # of passes rarely more than 2 or 3, for properly

managed database and decent sized memory.

Summary, cont.

 Choice of internal sort algorithm may matter:

 Quicksort: Quick!

 Heap/tournament sort: slower (2x), longer runs

 The best sorts are wildly fast:

 Despite 40+ years of research, we’re still improving!

 Clustered B+ tree is good for avoiding sorting;

unclustered tree is usually useless.

http://research.cs.wisc.edu/wind/Publications/wind-sort-tr.pdf
http://sortbenchmark.org/

