External Sorting

CS634
Lecture 10, Mar 2, 2016

Slides based on “Database Management Systems™ 3¢ ed, Ramakrishnan and Gehrke

2-Way Sort: Requires 3 Buffers

» Pass |:Read a page, sort it, write it
only one buffer page is used
» Pass 2,3,...,etc.:

three buffer pages used

INPUT 1
jourpur]-|—
——/—
 E— { INPUT 2

Main memory buffers Disk

Disk

Two-Way External Merge Sort

» Each pass we read + write each page in file.

» Number of pages N in the file determines number of passes
Ex: N = 7, round up to power-of-two 8 = 23, #passes = 4 (last slide)
Here 3 = log, 8 = ceiling(log, 7), so 4 = ceiling(log, N) + |

» Total number of passes is, using ceiling notation:

[log, N|+1

» Total cost is: write & read all N pages for each pass:

2N([log, N]+1)

4

4
>

4

4

Why is Data Sorting Important?

Data requested in sorted order

e.g., find students in increasing gpa order

Sorting is first step in bulk loading B+ tree index

Sorting useful for eliminating duplicate copies
Needed for set operations, DISTINCT operator

Sort-merge join algorithm involves sorting

Problem: sort | Gb of data with |MB of RAM, or IOMB

Sort is given a memory budget, can use temp disk as needed

Focus is minimizing I/O, not computation as in internal sorting

Two-Way External Merge Sort

(24 (62 o4 (67 [56] (4 (2] I mput e

PASS 0
B 1pageruns
PASS 1
Epageruns
PASS 2
4-page runs
lg] Le]
PASS 3
8-page runs

General External Merge Sort

More than 3 buffer pages. How can we utilize them?

» To sort a file with N pages using B buffer pages:
Pass 0: use B buffer pages. Produce [N/ B] sorted runs of B pages

each.
Pass 2, ..., etc.: merge B-/ runs.
| —
I:l»f—.{ INPUT 2 e —
| — | —
=
Disk B Main memo: Disk

Cost of External Merge Sort, as on pg. 427,
with yellow over over-simplistic conclusion: see next
slide

» Example: with 5 buffer pages, sort 108 page file:
Pass 0: "]_()8 / 5% 22 sorted runs of 5 pages each (last run is only 3
pages)

E:;sl): ’—22 / 4-|= 6 sorted runs of 20 pages each (last run is only 8
Pass 2: ceiling(6/4) = 2 sorted runs, 80 pages and 28 pages
Pass 3: Merge 2 runs to produce sorted file of 108 pages

Note 22 rounds up to power-of-4 64 = 43 so we see 3 passes of merging
using (up to) 4 input runs, each with one input buffer.
3 = ceiling(log, 22) where 4 = B-| and 22 = ceiling(N/B)
plus the initial pass, so 4 passes in all.

v

Number of passes: 1+ |—|og B_1|_ N/ B—|-|

Cost = 2N * (# of passes) = 2*108*4 i/os
This cost assumes the data is read from an input file and written to
another output file, and this i/o is counted

v

v

Cost of External Merge Sort, bigger file

Number of passes: 1+ |'Iog 5_1[_ N/ BT‘

Cost = 2N * (# of passes)
Example: with 5 buffer pages, sort 250 page file, including reading the
input data from a file and writing the output data to another file.
Pass 0: ceiling(250/5) = 50 sorted runs of 5 pages each
Pass |: ceiling(50/4) = |3 sorted runs of 20 pages each (last run is only
10 pages)
Pass 2: ceiling(13/4) = 4 sorted runs, 80 pages and 10 pages
Pass 3: Sorted file of 250 pages
Note 50 again rounds up to power-of-4 64 = 43 so we see 3 passes of
merging using (up to) 4 input runs, plus the initial pass, so 4 passes again
Cost = 2%250%4 i/os
But 50 is getting up in the vicinity of 64, where we start needing another
pass

v

v v

Example of a Blocked I/O Sort

Example: N=IM blocks, B=5000 blocks memory for sort
Use 32 blocks in a big buffer, so have 5000/32 = |56 big buffers
File is IM/32 = 31250 big blocks

» Pass 0:sort using |56 big buffers to first runs: get
ceiling(31250/156) = 201 runs

» Pass |:merge using 155 big buffers to 2 runs

» Pass 2: merge 2 runs to final result

See 3 passes here, vs. 2 using “optimized” sort, pg. 43 |

» Cost = 2N*3 = 6N, vs. 4N using ordinary blocks

» But /O is 4ms vs. (5/32)ms, so 6%(5/32)=1 vs. 4%4 = 16,a win.

Cost of External Merge Sort

» Example: with 5 buffer pages, sort 108 page file:
Pass 0: ceiling(108/4) = 22 sorted runs of 5 pages each (last run is only 3 pages)
Pass |: ceiling(22/4) = 6 sorted runs of 20 pages each (last run is only 8 pages)
Pass 2: ceiling(6/4) = 2 sorted runs, 80 pages and 28 pages
Pass 3: Merge 2 runs into sorted file of 108 pages

Note 22 rounds up to power-of-4 64 = 43 so we see 3 passes of merging using (up
to) 4 input runs, each with one input buffer.

3 = ceiling(log, 22) where 4 = B-| and 22 = ceiling(N/B)
plus the initial pass, so 4 passes in all.
Number of passes: 1+ Flog sl N/ BT]
But the passes are not always all the same size: look at writes and reads
over whole run (including writing the output of the sort in the last pass)
[Read N],write N, read N, write N, read N, write N, read N, [write N]

The bracketed amounts depend on whether or not the data is read from a file at
the start and written to a file at the end. Often data is pipelined in and/or
pipelined out, saving significantly

That’s 6N, 7N, or 8N i/os, not always the 8N as given in the book’s formula
Cost = N * (# of read/writes of N) = 2N(#passes - 1) up to 2N(#passes)

Number of Passes of External Sort

N B=3 |B=5 |B=9 B=17 B=129 ‘ B=257
100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 ' 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 | 26 14 9 7 4 4
1,000,000,000, 30 | 15 10 8 5 4

Prefetching to speed up reading

» To reduce wait time for I/O request to complete, can
prefetch into “shadow block’

Potentially, more passes; in practice, most files still sorted in

2-3 passes
= —
[e— —
P o0 0
r
Disk Disk

B main memory buffers, k-way merge

Prefetching, tuning i/o

» Note this is a general algorithm, not just for sorting
» Can be used for table scans too

» Database have I/O related parameters

» Oracle:
» DB_FILE_MULTIBLOCK_READ_COUNT
» Says how many blocks to read at once in a table scan

(Already existent) Clustered B+ Tree
Used for Sorting

Cost: root to the left-most
leaf, then retrieve all leaf
pages (Alternative |)

v

Index
(Directs search)

v

If Alternative 2 is used,
additional cost of
retrieving data records:
each page fetched just

once I:H:H:H:H:l

Data Records

Data Entries
("Sequence set")

Always better than external sorting!

External Sorting vs. Unclustered Index

N Sorting p=1 p=10 p=100

100 200 100 1,000 10,000

1,000 2,000 1,000 10,000 100,000
10,000 40,000 10,000 100,000 1,000,000
100,000 600,000 100,000 1,000,000 |10,000,000
1,000,000 8,000,000 |1,000,000 10,000,000 |100,000,000
10,000,000 80,000,000 10,000,000 1 100,000,000 |1,000,000,000

* p: # of records per page (p=100 is the more realistic value)
* B=1,000 and block size=32 for sorting
* Assumes the blocks are never found in the buffer pool

Using B+ Trees for Sorting

» Scenario:Table to be sorted has B+ tree index on sorting
column(s).

» |dea: Can retrieve records in order by traversing leaf pages.

» Is this a good idea?

» Cases to consider:
B+ tree is clustered Good idea!
B+ tree is not clustered Could be a very bad idea!

Unclustered B+ Tree Used for Sorting

» Alternative (2) for data entries; each data entry
contains rid of a data record. In general, one I/O per
data record!

Index
(Directs search)

Data Records

Sorting Records: Benchmarks

» Parallel sorting benchmarks/competitions exist in practice
» Datamation: Sort |M records of size 100 bytes

Typical DBMS: |5 minutes

World record: 3.5 seconds (circal997)

12-CPU SGI machine, 96 disks, 2GB of RAM

2001: .48 sec. at (most recent | could find)

Oracle on dbs2: 3 min. using default settings, 24MB for PGA.
» Newer benchmarks:

Minute Sort: How many TB can you sort in | minute?

, using general purpose sort code on a system with 3,134
nodes each with 2 Xeon cores and 96GB memory) and ... at Alibaba
Group Inc.

Cloud Sort: How much in USD to sort 100 TB using a public cloud
2015:$451 on 330 Amazon EC2 r3.4xlarge nodes, by profs at UCSD.

http://research.cs.wisc.edu/wind/Publications/wind-sort-tr.pdf
http://sortbenchmark.org/

Oracle on dbs2: 3 min to sort 1M records

Summary
» In roughly 100MB of data (actually 78MB)
» Suppose Oracle allots |MB for this sort » External sorting is important; DBMS may dedicate part of
» Then 100MB/IMB = 100 runs in pass 0 buffer pool for sorting! Oracle: separate memory area
» IMB/8KB = 128 pages of buffer (B=128) » External merge sort minimizes disk I/O cost:

Pass 0: Produces sorted runs of size B (# buffer pages). Later

» So pass | merges 100 runs into final sorted output passes: merge runs.

» The DB reads/writes the 100MB twice, then the output is # of runs merged at a time depends on B, and block size.
saved in the filesystem (faster, ignore for now) Larger block size means less I/O cost per page.

» 200MB/8KB = 25K i/o, at about 100 i/o/s Larger block size means smaller # runs merged.

» 25Ki/os/(100 i/os/s) = 250 s = 4 min In practice, # of passes rarely more than 2 or 3, for properly

managed database and decent sized memory.

» Works out, so probably right # passes.

Summary, cont.

» Choice of internal sort algorithm may matter:
Quicksort: Quick!
Heap/tournament sort: slower (2x), longer runs
» The best sorts are wildly fast:
Despite 40+ years of research, we're still improving!
» Clustered B+ tree is good for avoiding sorting;
unclustered tree is usually useless.

