
Evaluation of Relational Operators:

Chap. 14

CS634
Lecture 11, Mar 7. 2016

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Architecture of a DBMS

Data

Disk Space Manager

Buffer Manager

A first course in database systems, 3rd ed, Ullman and Widom

Index/File/Record Manager

Execution Engine

Query Compiler

User
SQL Query

Query Plan (optimized)

Index and Record requests

Page Commands

Read/Write pages

Disk I/O

2

Relational Algebra

 Relational operators:

 Selection

 Projection

 Join Combines several relations using conditions

 Set-difference Union Intersection

 Aggregation and Grouping

Example Schema

 Similar to old schema; rname added

 Reserves:

 40 bytes long tuple, 100K records, 100 tuples per page, 1000 pages

 Sailors:

 50 bytes long tuple, 40K tuples, 80 tuples per page, 500 pages

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Selections with Simple Condition

 Case 1: No index, Unsorted data

 Do scan

 Case 2: No Index, Sorted Data

 Perform binary search on file (exact match or ranges)

 O(log M), M = number of pages in file

 Case 3: Index Available

 Is the index B+-Tree or Hash?

 Is it clustered or not?

)(R
attrOPval

Using an Index for Selections

 Cost depends on

 Number of qualifying tuples

 Clustering

 Cost has two components:

 Finding qualifying data entries (typically small)

 Retrieving records (could be large w/o clustering)

 Consider Reserves, assume 10% of tuples satisfy condition

 Result has 10K tuples, 100 pages

 With clustered index, cost is little more than 100 I/Os

 If unclustered, up to 10000 I/Os!

For Unclustered Indexes

 Important refinement:

1. Find qualifying data entries

2. Sort the rid’s of the data records to be retrieved

3. Fetch rids in order

 Ensures that each data page is looked at just once
 although number of I/Os still higher than with clustering

Example from Oracle: unclustered index on

K500K

SQL> select rowid from bench where k500k>=400 and k500k<403;

ROWID

AACh1kAAJAAADVGAAU k500k=400: 2 data entries

AACh1kAAJAAAG1DAAW

AACh1kAAJAAAFEBAAY k500k=401: 2 data entries

AACh1kAAJAAAGP0AAC

AACh1kAAJAAAENrAAA k500k=402: 4 data entries

AACh1kAAJAAAGIXAAB

AACh1kAAJAAAGfBAAW

AACh1kAAJAAAHjNAAE

 RIDs for a certain key are in sorted order in index.

 With 3 keys, the whole set of RIDs is not in RID order.

 This is an index-only query, no need to access heap table.

Example from Oracle: unclustered index on

K500K

SQL> select kseq from bench where k500k>=400 and k500k<403;

KSEQ

432909

551651

661223

801212

817431

846181

894121

985835

8 rows selected.

 Note that the RIDs were sorted before the KSEQ values were obtained from

the heap table.

General Conditions Selections

 Condition may be composite

 In conjunctive form: easier to deal with

 At least one disjunction: less favorable case

 Disjunctive form

 Only one of the conditions, if met, qualifies tuple

 Even if some disjunct is optimized, the other(s) may require scan

 In general, this case dealt with using set union

 Most DBMS optimizers focus on conjunctive forms

Evaluating Conjunctive Forms (1/2)

 Find the most selective access path, retrieve tuples using it, and

apply any remaining terms that don’t match the index

 Most selective access path: An index or file scan that we estimate will

require the fewest page I/Os

 Example: day<8/9/94 AND bid=5 AND sid=3

 B+ tree index on day can be used; then, bid=5 and sid=3 must be

checked for each retrieved tuple

 Similarly, a hash index on <bid, sid> could be used; day<8/9/94 must

then be checked.

 Intersect rid’s

 If we have two or more matching indexes that use

Alternatives (2) or (3) for data entries:

 Get sets of rids of data records using each matching index

 Then intersect these sets of rids (we’ll discuss intersection soon!)

 Retrieve the records and apply any remaining terms

 Example: day<8/9/94 AND bid=5 AND sid=3

 B+ tree index on day and an index on sid, both using Alternative (2)

 Retrieve rids satisfying day<8/9/94 using the B+ tree, rids satisfying

sid=3 using the hash, intersect, retrieve records and check bid=5

Evaluating Conjunctive Forms (2/2)

Intersecting RIDs via Index JOIN

 Example: day<8/9/94 AND bid=5 AND sid=3

 B+ tree index on day and an index on sid, both using

Alternative (2)

 Retrieve rids satisfying day<8/9/94 using the B+ tree, rids

satisfying sid=3 using the hash, intersect, retrieve records and

check bid=5

 Another way to achieve this: Join the two indexes

 As tables, indexes are I1 = (rid, day) and I2 = (rid, sid)

 Join them: I1 where day<8/9/94 JOIN I2 where sid = 3

 Obtain (rid, day, sid) satisfying the two conditions and providing rids

 Pg. 446: Oracle does this.

Projection

 Remove unwanted attributes

 Eliminate any duplicate tuples produced (the hard part)

Projection with Sorting

 Modify Pass 0 of external sort to eliminate unwanted fields

 Produce runs of about 2B pages are produced

 Tuples in runs are smaller than input tuples

 Size ratio depends on number and size of fields that are dropped

 Modify merging passes to eliminate duplicates

 Thus, number of result tuples smaller than input

 Difference depends on number of duplicates

 Cost

 In Pass 0, read original relation (size M), write out same number of smaller

tuples

 In merging passes, fewer tuples written out in each pass. Using Reserves

example, 1000 input pages reduced to 250 in Pass 0 if size ratio is 0.25

Projection with Sorting

 Can be done without modifying sort:

1. Do attribute-dropping before feeding data to sort, end up with T

pages.

2. Sort result

3. Post-process by watching for new row-values as data is produced.

 Cost

 In step 1, read original relation (size M), write out same number of smaller

tuples

 In merging passes, same number of tuples written out in each pass. Use

normal sort cost for M pages, 2M * (# of passes)

Projection with Hashing

 Partitioning phase:

 Read R using one input buffer. For each tuple, discard unwanted

fields, apply hash function h1 to choose one of B-1output buffers

 Each output buffer is feeding a run on disk

 Result is B-1 partitions (of tuples with no unwanted fields), tuples

from different partitions guaranteed to be distinct

 See next slide for diagram

 Duplicate elimination phase: process runs from partitioning

phase. Each run forms a partition of the data

Hash Projection: Partitioning Phase

 Partition R using hash function h

 Duplicates will hash to the same partition

B main memory buffers DiskDisk

Original

Relation OUTPUT

2INPUT

1

hash
function

h
B-1

Partitions

1

2

B-1

. . .

Projection with Hashing

 Partitioning phase: ends up with partitions of data, each held in

a run on disk

 Duplicate elimination phase:

 For each partition, read it and build an in-memory hash table, using

hash h2 on all fields, while discarding duplicates

 If partition does not fit in memory, can apply hash-based projection

algorithm recursively to this partition

 Cost

 Read R, write out each tuple, but fewer fields, size T <= M. Result

read in next phase. Total i/o cost: M + 2T<= 3M, similar to sort if it

can be done in 2 passes.

Read in a partition of R, hash it using h2 (<> h!)

Discard duplicates as go along.

When partition is all read in, scan the hash table and write it out as
part of the projection result

Partitions

of R

Input buffer
for R

Hash table for partition

Ri (< B pages)

B main memory buffersDisk

Output

buffer

Disk

Projection Result

hash
fn

h2

h2

Hash Projection: Second Phase

or

Discussion of Projection

 Sort-based approach is the standard

 better handling of skew and result is sorted.

 Hashing is more parallelizable

 If index on relation contains all wanted attributes in its

search key, do index-only scan

 Apply projection techniques to data entries (much smaller!)

 If an ordered (i.e., tree) index contains all wanted attributes

as prefix of search key, can do even better:

 Retrieve data entries in order (index-only scan)

 Discard unwanted fields, compare adjacent tuples to check for

duplicates

Equality Joins With One Join Column

 Most frequently occurring in practice

 We will consider more complex join conditions later

 Cost metric: number of I/Os

 Ignore output costs

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid=S1.sid

Simple Nested Loops Join

 For each tuple in the outer relation R, we scan the entire inner

relation S.

 Cost: M + pR * M * N = 1000 + 100*1000*500 I/Os

 Page-oriented Nested Loops join:

 For each page of R, get each page of S, and write out matching pairs

 Cost: M + M*N = 1000 + 1000*500

 If smaller relation (S) is outer, cost = 500 + 500*1000

foreach tuple r in R do
foreach tuple s in S do

if ri == sj then add <r, s> to result

Block Nested Loops Join

 one page input buffer for scanning the inner S

 one page as the output buffer

 remaining pages to hold ``block’’ of outer R

 For each matching tuple r in R-block, s in S-page, add <r, s> to result.

Then read next R-block, scan S, etc.

. . .

. . .

R & S
Block of R

(B-2 pages)

Input buffer for S Output buffer

. . .

Join Result

Examples of Block Nested Loops

 Cost: Scan of outer + #outer blocks * scan of inner

 #outer blocks =

 With Reserves (R) as outer, and 100 pages per block:

 Cost of scanning R is 1000 I/Os; a total of 10 blocks.

 Per block of R, we scan Sailors (S); 10*500 I/Os.

 Total 1000 + 10*500 = 6000 i/os.

 Need 101 buffer pages for this.

 With 100-page block of Sailors as outer:

 Cost of scanning S is 500 I/Os; a total of 5 blocks.

 Per block of S, we scan Reserves; 5*1000 I/Os.

 Total 500 + 5*1000 = 5500 i/os. Same ballpark as above.

 Compare these to page-oriented NLJ: 500,000 i/o or worse!

 # /of pages of outer blocksize

Executing Joins: Index Nested Loops

 Cost = M + (M*pR) * (cost of finding matching S tuples)

 M = number of pages of R, pR = number of R tuples per page

 If relation has index on join attribute, make it inner relation

 For each outer tuple, cost of probing inner index is 1.2 for hash

index, 2-4 for B+, plus cost to retrieve matching S tuples

 Clustered index typically single I/O (Alt 2) or none (Alt. 1)

 Unclustered index 1 I/O per matching S tuple

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

Example of Index Nested Loops (1/2)

Case 1: Hash-index (Alternative 2) on sid of Sailors

 Choose Sailors as inner relation

 Scan Reserves: 100K tuples, 1000 page I/Os

 For each Reserves tuple

 1.2 I/Os to get data entry in index

 1 I/O to get (the exactly one) matching Sailors tuple (primary key)

 Total: 221,000 I/Os

Example of Index Nested Loops (2/2)

Case 2: Hash-index (Alternative 2) on sid of Reserves

 Choose Reserves as inner

 Scan Sailors: 40K tuples, 500 page I/Os

 For each Sailors tuple

 1.2 I/Os to find index page with data entries

 Assuming uniform distribution, 2.5 matching records per sailor

 Cost of retrieving records is nothing (Alt 1 clustered), single I/O

(Alt. 2 clustered index) or 2.5 I/Os (unclustered index)

 Total: 48,500 I/Os (clustered Alt 1), 88,500 I/Os (clustered Alt

2) or 148,500 I/Os (unclustered)

Sort-Merge Join

 Sort R and S on the join column (book assumes file-to-file

sort, no pipelining)

 Then scan them to do a merge on join column:

 Advance scan of R until current R-tuple >= current S tuple

 Then, advance scan of S until current S-tuple >= current R tuple

 Repeat until current R tuple = current S tuple

 At this point, all R tuples with same value in Ri (current R group)

and all S tuples with same value in Sj (current S group) match

 Output <r, s> for all pairs of such tuples

 May have to rescan part of one of the input files if have pages of duplicate

join keys vs. multiple matching join keys

 Resume scanning R and S

Sort-Merge Join Cost

 R is scanned once

 Each S group is scanned once per matching R tuple

 Multiple input-file scans per group needed only if S records with
same join attribute value span multiple pages

 Multiple such scans of an S group are likely to find needed pages in
buffer

 Cost: (assume B buffers)

 Sort(R) + Sort(S) + merge

 2M (1+log B-1(M/B)) + 2N (1+log B-1 (N/B)) + (M+N)

 The cost of scanning, M+N, could be M*N worst case (very
unlikely!)

 In many cases, the join attribute is primary key in one of the
tables, which means no duplicates in one merge stream.

2-Pass Sort-Merge Join

 With enough buffers, sort can be done in 2 passes

 First pass generates N/B sorted runs of B pages each

 If one page from each run + output buffer fits in memory, then

merge can be done in one pass; denote larger relation by L

 2L/B + 1 <= B, holds if (approx) B >

 One optimization of sort allows runs of 2B on average

 First pass generates N/2B sorted runs of 2B pages each

 Condition above for 2-pass sort becomes B >

 (But we’re not officially covering this optimization)

 Merge can be combined with filtering of matching tuples

 The cost of sort-merge join becomes 3(M+N)

L2

L

Hash-Join: Partitioning Phase

 Partition both relations using hash function h

 R tuples in partition i will only match S tuples in partition I

 This is the similar to the partitioning phase of Projection by Hashing

B main memory buffers DiskDisk

Original

Relations OUTPUT

2INPUT

1

hash
function

h
B-1

Partitions

1

2

B-1

. . .

Read in a partition of R, hash it using h2 (<> h!)

Scan matching partition of S, search for matches.

Partitions

of R & S

Input buffer
for Si

Hash table for partition

Ri (k < B-1 pages)

B main memory buffersDisk

Output

buffer

Disk

Join Result

hash
fn

h2

h2

Hash-Join: Probing Phase

Note: A smaller table has smaller partitions, so each of its

partition hash tables will more easily fit in memory

Hash-Join Properties

 #partitions k <= B-1 because one buffer is needed for scanning

input

 Assuming uniformly sized partitions, and maximizing k:

 k= B-1, and M/(B-1) <= B-2, i.e., B >

 M is smaller of the two relations!

 So best to use the smaller table’s partitions for the second-phase hash

tables.

 i.e., we can take advantage of one table being small, unlike sort-merge.

 If the hash function does not partition uniformly, one or more

second-phase partitions may not fit in memory

 Can apply hash-join technique recursively to do the join of this R-

partition with corresponding S-partition.

M

Cost of Hash-Join

 In partitioning phase, read+write both R and S: 2(M+N)

 In matching phase, read both R and S: M+N

 (assumes hash tables fit in memory, B >)

 With sizes of 1000 and 500 pages, total is 4500 I/Os

M

Hash-Join vs Sort-Merge Join

 Given sufficient amount of memory both have a cost of

3(M+N) I/Os (with no pipelining in or out, book’s

assumption)

 Hash Join superior on this count if relation sizes differ

greatly

 Hash Join shown to be highly parallelizable

 Sort-Merge less sensitive to data skew, and result is sorted

General Join Conditions (1/2)

 Equalities over several attributes

 e.g., R.sid=S.sid AND R.rname=S.sname

 For Index Nested Loop, build index on <sid, sname> (if S is inner);

or use existing indexes on sid or sname

 For Sort-Merge and Hash Join, sort/partition on combination of

the two join columns

General Join Conditions (2/2)

 Inequality conditions

 e.g., R.rname < S.sname

 For Index Nested Loop need clustered B+ tree index.

 Range probes on inner; # matches likely to be much higher than for

equality joins

 Hash Join, Sort Merge Join not applicable

 Block Nested Loop quite likely to be the best join method here

Set Operations

 Intersection and cross-product special cases of join

 Union (Distinct) and Except similar

 Both hashing and sorting are possible

 Similar in concept with projection

Union with Sorting

 Sort both relations (on combination of all attributes)

 Scan sorted relations and merge them

 Alternative: Merge runs from Pass 0 for both relations

Union with Hashing

 Partition R and S using hash function h

 For each S-partition, build in-memory hash table (using h2)

 scan corresponding R-partition and add tuples to table while

discarding duplicates

Aggregate Operations (sum, avg, count,

min, max)

 Without grouping:

 In general, requires scanning the relation

 Given index whose search key includes all attributes in the

SELECT or WHERE clauses, can do index-only scan

 Example: select avg(s.age) from sailors s

 With index on age, just scan it for age values, take avg on the fly.

 Select max(s.age) from sailors s where age < 50;

 Still index-only

 Select max(s.age) from sailors s where rating = 5;

 Uses table scan unless there is an index on rating.

 With grouping:

 Sort on group-by attributes, then scan relation and compute

aggregate for each group

 Possible to improve upon step above by combining sorting and

aggregate computation

 Similar approach based on hashing on group-by attributes

 Given tree index whose search key includes all attributes in SELECT,

WHERE and GROUP BY clauses, can do index-only scan

 If group-by attributes form prefix of search key, can retrieve data

entries/tuples in group-by order

Aggregate Operations Impact of Buffering

 Repeated access patterns interact with buffer replacement

policy

 Inner relation is scanned repeatedly in Simple Nested Loop Join

 With enough buffer pages to hold inner, replacement policy

does not matter. Otherwise, MRU is best, LRU is worst

(sequential flooding)

 Does replacement policy matter for Block Nested Loops?

 What about Index Nested Loops? Sort-Merge Join?

Summary

 Queries are composed of a few basic operators

 The implementation of these operators can be carefully tuned

 Many alternative implementation techniques for each

operator

 No universally superior technique for most operators

 Must consider available alternatives for each operation in

a query and choose best one based on system statistics

