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Query Evaluation Overview

 SQL query first translated to relational algebra (RA)

 Tree of RA operators, with choice of algorithm among 

available implementations for each operator

 Main issues in query optimization

 For a given query, what plans are considered?

 Algorithm to search plan space for cheapest (estimated) plan

 How is the cost of a plan estimated?

 Objective

 Ideally: Find best plan

 Practically:Avoid worst plans!

Evaluation Example

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested 

Loops)

(On-the-fly)

(On-the-fly)

Annotated Tree

Cost Estimation

For each plan considered, must estimate:

 Cost of each operator in plan tree

 Depends on input cardinalities

 Operation and access type: sequential scan, index scan, joins

 Size of result for each operation in tree

 Use information about the input relations

 For selections and joins, assume independence of predicates

Query Blocks

 SQL query parsed into a collection of query blocks

 Blocks are optimized one at a time

 Nested blocks can be treated as calls to a subroutine

 One call made once per outer tuple

 In some cases cross-block optimization is possible

 A good query optimizer can unnest queries

SELECT S.sname
FROM Sailors S
WHERE S.age IN

(SELECT  MAX (S2.age)
FROM Sailors S2)

Nested block

Outer block

Query Blocks

 In fact this is an uncorrelated subquery: The inner block can 

be evaluated once!

SELECT S.sname
FROM Sailors S
WHERE S.age IN

(SELECT  MAX (S2.age)
FROM Sailors S2)



Query Blocks

 Looking for sailors who are of max age in their own rating 

group.

 Correlated subquery: each row in S needs its own execution 

of the inner block

SELECT S.sname
FROM Sailors S
WHERE S.age IN

(SELECT  MAX (S2.age)
FROM Sailors S2

WHERE S2.rating = S.rating)

Block Optimization

 Block = Unit of optimization

 For each block, consider:
1. All available access methods, for each relation in FROM 

clause

2. All left-deep join trees

 all ways to join the relations one-at-a-time

 all relation permutations and join methods

 Recall:

 Left table = outer table of a nested loop join

 Left table of NLJ can be pipelined: rows used one at a time in 
order

 But need to consider other join methods too, giving up 
pipelining in many cases

Expressions

 Query is simplified to a selection-projection-cross 

product expression

 Aggregation and grouping can be done afterwards

 Optimization with respect to such expressions

 Cross-product includes conceptually joins

 Will talk about equivalences in a bit

 Statistics and Catalogs

 To choose an efficient plan, we need information about the 

relations and indexes involved

 Catalogs contain information such as:

 Tuple count (NTuples) and page count (NPages) for each relation

 Distinct key value count (NKeys) for each index, INPages

 Index height, low/high key values (Low/High) for each tree index

 Histograms of the values in some fields (optional)

 Catalogs updated periodically

 Updating statistics when data change too expensive

 Approximate information used, slight inconsistency is ok

Size Estimation and Reduction Factors

 Maximum number of tuples is cardinality of cross product

 Reduction factor (RF) associated with each term reflects its 

impact in reducing result size

 Implicit assumption that terms are independent!

 col = value has RF =1/NKeys(I), given index I on col

 col1 = col2 has RF = 1/max(NKeys(I1), NKeys(I2))

 col > value has RF = (High(I)-value)/(High(I)-Low(I))

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Histograms

 Most often, data values are not uniformly distributed within 

domain

 Skewed distributions result in inaccurate cost estimations

 Histograms

 More accurate statistics

 Break up the domain into buckets

 Store the count of records that fall in each bucket

 Tradeoff

 Histograms are accurate, but take some space

 The more fine-grained the partition, the better accuracy

 But more space required



Histogram Classification

 Equiwidth

 Domain split into equal-length partitions

 Large difference between counts in different buckets

 Dense areas not sufficiently characterized

 Equidepth

 Histograms “adapts” to data distribution

 Fewer buckets in sparse areas, more buckets in dense areas

 Used by Oracle (pg. 485)

Relational Algebra Equivalences

 Why are they important? 

 They allow us to:

 Convert cross-products to joins

 Cross products should always be avoided (when possible)

 Choose different join orders

 Recall that choice of outer/inner influences cost

 “Push-down” selections and projections ahead of joins

 When doing so decreases cost

Relational Algebra Equivalences

Selections:                                                          

      c cn c cnR R1 1  ... . . .

        c c c cR R1 2 2 1 Commute

Cascade

 Cascade property: 

 Allows us to check multiple conditions in same pass

 Allows us to “push down” only partial conditions (when not 

possible/advantageous to push entire condition)

Relational Algebra Equivalences

Projections:

       a a anR R1 1 . . . Cascade

If every ai set is included in ai+1,

Example:
a1 = (a,b), a2 = {a,b,c}
a2(T) has (a, b, c) columns

a1(a2(T)) has (a,b) columns, same as a1(T) 



Relational Algebra Equivalences

Joins:

R      (S     T)      (R     S)      T   Associative

(R     S)      (S     R)   Commute

Sketch of proof: 

 Show for cross product

 Add join conditions as selection operators

 Use cascading selections in associative case

Relational Algebra Equivalences

Joins:

R      (S     T)      (R     S)      T   Associative

(R     S)      (S     R)   Commute

 Commutative property: 

 Allows us to choose which relation is inner/outer

 Associative property:

 Allows us to restrict plans to left-deep only, i.e., any query tree can 
be turned into a left-deep tree.



Relational Algebra Equivalences

Commuting selections with projections

 Projection can be done before selection if all attributes in the 

condition evaluation are retained by the projection

   )()( RR acca  

Relational Algebra Equivalences

Commute selection with join

 Only if all attributes in condition appear in one relation and not in 

the other: c includes only attributes from R

 Condition can be decomposed and “pushed” down before joins

 Here, c1 includes only attributes from R and c2 only attributes 

from S

    SRSR cc             

    SRSR cccc 2121            
 

Relational Algebra Equivalences

Commute projection with join

 Only if attributes in join condition appear in the corresponding 

projection lists

    )(          2c1c  SRSR aaa   

System R Optimizer

 Developed at IBM starting in the 1970’s

 Most widely used currently; works well for up to 10 joins

 Cost estimation

 Statistics maintained in system catalogs

 Used to estimate cost of operations and result sizes

 Query Plan Space

 Only the space of left-deep plans is considered

 Left-deep plans allow output of each operator to be pipelined into 

the next operator without storing it in a temporary relation

 Cartesian products avoided

System R Optimizer

 Developed at IBM starting in the 1970’s

 Most widely used currently; works well for up to 10 joins

 Cost estimation

 Statistics maintained in system catalogs

 Used to estimate cost of operations and result sizes

 Query Plan Space

 Only the space of left-deep plans is considered

 Left-deep plans allow output of each operator to be pipelined into 

the next operator without storing it in a temporary relation

 Cartesian products avoided

SQL Query Semantics (pg. 136, 156)

1. compute the cross product of tables in FROM

2. delete rows that fail the WHERE clause

3. project out columns not mentioned in select list or 
group by or having clauses

4. group rows by GROUP BY

5. apply HAVING to the groups, dropping some out

6. if necessary, apply DISTINCT

7. if necessary, apply ORDER BY

Note this all follows the order of the SELECT clauses, 
except for projection and DISTINCT, so it’s not hard to 
remember.



Single-Relation Plans

Single-Relation Plans

 FROM clause contains single relation

 Query is combination of selection, projection, and aggregates 
(possibly GROUP BY and HAVING, but these come late in 
the logical progression, so usually less crucial to planning)

 Main issue is to select best from all available access paths
(either file scan or index)

 Access path involves the table and the WHERE clause

 Another factor is whether the output must be sorted

 E.g., GROUP BY requires sorting

 Sorting may be done as separate step, or using an index if an 
indexed access path is available

Plans Without Indexes

 Only access path is file scan

 Apply selection and projection to each retrieved tuple

 Projection may or may not use duplicate elimination, depending on 
whether there is a DISTINCT keyword present

 GROUP BY:

 Write out intermediate relation after selection/projection

 (or pipeline into sort)

 Sort intermediate relation to create groups

 Apply aggregates on-the-fly per each group

 HAVING also performed on-the-fly, no additional I/O needed

Plans With Indexes

 There are four cases:

1. Single-index access path

 Each index offers an alternative access path

 Choose one with lowest I/O cost

 Non-primary conjuncts, projection, aggregates/grouping applied 
next

2. Multiple-index access path

 Each index used to retrieve set of rids

 Rid sets intersected, result sorted by page id

 Retrieve each page only once

 Non-primary conjuncts, projection, aggregates/grouping applied 
next

Plans With Indexes (contd.)

3. Tree-index access path: extra possible use…

 If GROUP BY attributes prefix of tree index, retrieve tuples in 

order required by GROUP BY

 Apply selection, projection for each retrieved tuple, then aggregate

 Works well for clustered indexes

Example:   With tree index on rating

SELECT count(*), max(age)
FROM Sailors S
GROUP BY rating

Plans With Indexes (contd.)

3. Index-only access path

 If all attributes in query included in index, then there is no need to 

access data records: index-only scan

 If index matches selection, even better: only part of index examined

 Does not matter if index is clustered or not!

 If GROUP BY attributes prefix of a tree index, no need to sort!

 Example:   With tree index on rating

 Note count(*) doesn’t require access to row, just RID.

SELECT max(rating),count(*)
FROM Sailors S



Example Schema

 Similar to old schema; rname added

 Reserves:

 40 bytes long tuple, 100K records, 100 tuples per page, 1000 pages

 Sailors:

 50 bytes long tuple,  40K tuples, 80 tuples per page, 500 pages

 Assume index entry size 10% of data record size 

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Cost Estimates for Single-Relation Plans

 Sequential scan of file:

 NPages(R)

 Index I on primary key matches selection

 Cost is Height(I)+1 for a B+ tree, about 1.2 for hash index

 Clustered index I matching one or more selects:

 NPages(CI) * product of RF’s of matching selects

Quick estimate: Npages(CI) = 1.1*NPages(TableData)

i.e. 10% more for needed keys

 Non-clustered index I matching one or more selects:

 (NPages(I)+NTuples(R)) * product of RF’s of matching selects

Quick estimate: Npages(I) = .1*Npages(R)  (10% of data size)

Example

 File scan:  retrieve all 500 pages

 Clustered Index I on rating

(1/NKeys(I)) * (NPages(CI)) = (1/10) * (50+500) pages

 Unclustered Index I on rating

(1/NKeys(I)) * (NPages(I)+NTuples(S)) = (1/10) * (50+40000) pages

SELECT S.sid
FROM Sailors S
WHERE S.rating=8

Multiple-Relation Plans

Queries Over Multiple Relations

 In System R only left-deep join trees are considered

 In order to restrict the search space

 Left-deep trees allow us to generate all fully pipelined plans

 Intermediate results not written to temporary files.

 Not all left-deep trees are fully pipelined (e.g., sort-merge join)

BA

C

D

BA

C

D

C DBA

Left-deep

Enumeration of Left-Deep Plans

 Among all left-deep plans, we need to determine:

 the order of joining relations

 the access method for each relation

 the join method for each join

 Enumeration done in N passes (if N relations are joined):

 Pass 1: Find best 1-relation plan for each relation

 Pass 2: Find best way to join result of each 1-relation plan (as 
outer) to another relation - result is the set of all 2-relation plans

 Pass N: Find best way to join result of a (N-1)-relation plan (as 
outer) to the N’th relation - result is the set of all N-relation plans

 Speed-up computation using dynamic programming 
(remember details of good plans to avoid recalc)



 For each subset of relations, retain only:

 Cheapest plan overall, plus

 Cheapest plan for each interesting order of the tuples

 Interesting order: order that allows execution of GROUP BY 

without requiring an additional step of sorting, aggregates 

 Avoid Cartesian products if possible 

 An N-1 way plan is not combined with an additional relation 

unless there is a join condition between them

 Exception is case when all predicates in WHERE have been used 

up (i.e., query itself requires a cross-product)

 Ex: select … from T1, T2, T3 where T1.x = T2.x

 Only one join condition, 3 tables, so end up with cross product

Enumeration of Left-Deep Plans (contd.) Cost Estimation for Multi-Relation Plans

 Two components:

1. Size of intermediate relations

 Maximum tuple count is the product of the cardinalities of 

relations in the FROM clause

 Reduction factor (RF) associated with each condition term

 Result cardinality = Max # tuples  *  product of all RF’s

2. Cost of each join operator

 Depends on join method

Example

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND S.rating>5 AND R.bid=100

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Pass 1

 Sailors

 B+ tree matches rating>5

 Most selective access path

 But index unclustered!

 Sometimes may prefer scan

 Reserves

 B+ tree on bid matches selection bid=100

 Cheapest plan 

Sailors:
Unclustered B+ tree on rating
Unclustered Hash on sid

Reserves:
Unclustered B+ tree on bid

Example

Example

Pass 2

 Consider each plan retained from Pass 1 as the outer, and how 

to join it with the (only) other relation 

 Sailors outer, Reserves inner

 No index matches join condition, this could be done as block 

nested loop

 Reserves outer, Sailors inner

 Since we have hash index on sid for Sailors, this could be a 

cheap plan using an indexed nested loop

 Only one matching records, does not matter that index is 

unclustered

 This would mean S.rating>5 is done after join.

Example, cont. (pipelining not in book)

 Also need to check sort-merge join

 But that requires materialization of input tables, an extra 
expense (or use pipelining into sort)

 (Not clear we can use pipelining out of both sorts, 
because the merge may want to rescan input on one side 
to handle pages of duplicate join keys.)

 Need to cost all three competing plans, choose least 
expensive

 Note that left-deep plans assume nested-loop joins are in 
use, so may miss good hash join plans

 Note on pg. 500:  Oracle considers non-left-deep plans to 
better utilize hash joins.



Nested Queries

 Nested block is optimized independently, with the outer tuple 

considered as providing a selection condition

 Outer block is optimized with the cost of “calling” nested 

block computation taken into account

 Implicit ordering of these blocks means that some good 

strategies are not considered

 The non-nested version of the query is typically optimized better

Nested Queries

SELECT S.sname
FROM Sailors S
WHERE EXISTS 

(SELECT  *
FROM Reserves R
WHERE R.bid=103 
AND R.sid=S.sid)

Equivalent non-nested query:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

AND R.bid=103


