
Transaction Management:

Concurrency Control, part 2

CS634
Class 18, Apr 6, 2016

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

More Dynamic Databases

 If the set of DB objects changes, Strict 2PL using row or
page locks will not ensure serializability (locking whole
tables will work but is horribly slow)

 Example:

 T1 finds oldest sailor for each of rating=1 and rating=2

 T2 does an insertion and a deletion

1. T1 locks all pages with rating = 1, finds oldest sailor (age = 71)

2. Next, T2 inserts a new sailor; rating = 1, age = 96

3. T2 deletes oldest sailor with rating = 2 (age = 80), commits

4. T1 locks all pages with rating = 2, and finds oldest (age = 63)

 No serial schedule gives same outcome!

The “Phantom” Problem

 T1 implicitly assumes that it has locked the set of all

sailor records with rating = 1

 Assumption only holds if no sailor records are added while T1

is executing!

 Two mechanisms to address the problem

 Index locking

 Predicate locking

Another phantom example

 Table tasks has one row for each worker task, with

worker name, task name, number of hours

 Rule that no worker has more than 8 hours total

 Application A to add a task sums hours for worker, adds

task if it fits under 8 hours max

 T1 running A sees ‘Joe’ has 6 hours, adds task of 2 hours

 Concurrently, T2 running A sees ‘Joe’ has 6 hours, adds task of

1 hour.

 Joe ends up with 9 hours of work.

 Again, the problem is there is no lock on the set of rows

being examined to make a decision

Index Locking

 Assume index on the rating field

 T1 should lock the index page(s) containing the data

entries with rating = 1, and their immediate neighbors

 If there are no records with rating = 1, T1 must lock the index

page where such a data entry would be, if it existed!

 e.g., lock the page with rating = 0 and beginning of rating=2

 Or lock pages for just one extra data item on one side, if a

lock is understood to cover the key value plus gap to one side.

 If there is no suitable index, T1 must lock all data pages,

and lock the file to prevent new pages from being added

Index Locking

 Assume index on the rating field

 Row locking is the industry standard now

 T1 should lock all the data entries with rating = 1 and at
least one neighbor (depending on details of protocol)

 If there are no records with rating = 1, T1 must lock the entries
adjacent to where data entry would be, if it existed!

 e.g., lock the last entry with rating = 0 and beginning of
rating=2

 If there is no suitable index, T1 must lock all the rows and
lock the file to prevent new rows from being added, or
use a “table lock”.

Predicate Locking

 Grant lock on all records that satisfy some logical predicate

 But note that a general predicate can depend on data in the row:
salary > 50000 + 1000*years

 Or a whole table: salary > (select avg(salary) in emps)

 Index locking is a special case of predicate locking

 Index supports efficient implementation of the predicate lock

 Predicate is specified in WHERE clause

 In general, predicate locking is expensive to implement!

 Can avoid the runtime cost by using Repeatable Read isolation
level, but that opens up anomaly possibilities.

Index Locking, Blow by blow

 Index locking happens in the storage engine, based on FILE

calls coming from query processor as directed by the query

plan

 Example: Transaction T1 accesses a heap table with certain

index, gets row for certain index key value, say 100. Suppose

the next data entry is for another key, 102.

 Storage engine share-locks the accessed data entry for key 100,

guarding it and the gap between that key and the next key.

 Then if another transaction T2 tries to change the row with key 100,

can’t get necessary X lock, waits. Same with key 101.

 Original transaction T1 can ask for next key, get 102.

 But if another transaction updates row with key 102 (not guarded by

T1’s share lock), then then T1 has to wait for the next key.

Index Locking Scenario, cont.

 There is an underlying assumption in that story: that all

the accesses in fact use the index on this column.

 Well, the important thing is that all accesses that change

the column value go through the index. It’s OK for

another reader to access the value.

 An insert or delete need to change the index, so they are

naturally involved.

 An update to this column also needs to change the index,

in two places, so it also collides with the old lock.

 You can see this has to be checked out carefully!

Locking for B+ Trees

 Naïve solution

 Ignore tree structure, just lock its pages following 2PL

 Very poor performance!

 Root node (and many higher level nodes) become bottlenecks

 Every tree access begins at the root!

 Not needed anyway!

 Only row data needs 2PL (contents of tree)

 Tree structure also needs protection from concurrent access

 But only like other shared data of the server program

 Note this modern view is not covered in book

 See Graefe, A Survey of B-tree locking techniques (2010)

 B-tree locking is a huge challenge!

http://www.hpl.hp.com/techreports/2010/HPL-2010-9.pdf

Locking vs. Latching
 To protect shared data in memory, multithreaded programs use

mutex (semaphores)
 API: enter_section/leave_section, or lock/unlock

 Every Java object contains a mutex, for convenience of Java programming:
underlies synchronized methods

 Database people call mutexes and related mechanisms “latches”

 Need background in multi-threaded programming to understand this
topic fully

 The tree structure needs mutex/latch protection

 Example: split node. No row data is changed, just the details in pages
in the buffer pool. No i/o is needed (can’t hold a latch across disk i/o
without ruining performance.)

 Latches can be provided by the same lock manager as does 2PL
locking, and can have share and exclusive types like locks.

 In these slides, will use “lock” in quotes to mean non-2PL
lock/latch…

Locking for B+ Trees (contd.)

 Searches

 Higher levels only direct searches for leaf pages

 Insertions

 Node on a path from root to modified leaf must be “locked” in

X mode only if a split can propagate up to it

 Similar point holds for deletions

 There are efficient locking protocols that keep the B-tree

healthy under concurrent access, and support 2PL on

rows

A Simple Tree Locking Algorithm:
(“lock” here is really a latch on tree structure)

 Search
 Start at root and descend: “crabbing down the tree”

 repeatedly, get S “lock” for child then “unlock” parent, end up with S “lock” on
leaf page

 Get 2PL S lock on row, provide row pointer to caller

 Later, caller is done with reading row, arranges release of S “lock”

 Insert/Delete
 Start at root and descend, crabbing, obtaining X “locks” as needed

 Once child is “locked”, check if it is safe

 If child is safe, release “lock” on parent, leaving X “lock” on child

 Get 2PL X lock on place for new row/old row, insert/delete row, release “lock”

 Safe node: not about to split or coalesce
 Inserts: Node is not full

 Deletes: Node is not half-empty

 When control gets back to QP, transaction only has 2PL locks on rows

Difference from text

 The algorithm actions described in the text are valid, for

example, crabbing down the tree, worrying about full

nodes, etc.

 What’s different is that the locks for index nodes are

shorter lived than described in the text: only 2PL locks on

rows are kept until end of transaction, not any locks on

index nodes.

 Note that text uses locks and releases them before

commit, a sign that they are not actually Strict 2PL locks.

 Note the admission on pg. 564 that the text’s coverage

on this topic is “not state of the art”. Graefe’s paper is.

An Example

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:

Search 38*

Insert 45*

Insert 25*

Delete 38*

23

Insert 45 case

Crab down tree getting X “locks” (really latches)

“Xlock” A

“Xlock” B

B is safe, so “unXlock” A

“Xlock” C

C is unsafe, so can’t “unXlock” B now

“Xlock” E (page of rows)

E is safe, so “unXlock” C

Xlock row (2PL lock) for 45, copy out row or pin buffer, provide row

pointer to caller

“UnXLock” E

Return to QP with 2PL X lock on row with key 45 (or index entry and

row)

A Variation on Algorithms

 Search

 As before

 Insert/Delete

 Set “locks” as if for search, get to leaf, and set 2PL X lock on

leaf

 If leaf is not safe, release all “locks”, and restart using previous

Insert/Delete protocol

 This is what happens if the search down the tree happens on a

page that is not in buffer—don’t want to hold a latch across a

disk i/o (takes too long)

Lock Management

 Lock and unlock requests are handled by the lock manager (see Sec.
17.2.1)

 Lock table entry:

 Lock name/identifier

 Number of transactions currently holding a lock

 Type of lock held (shared or exclusive)

 Pointer to queue of lock requests

 Locking and unlocking have to be atomic operations (need mutex
protection)

 Lock table entries are kept in order, to prevent starvation (lots of
reads preventing a writer from ever getting a lock, etc.)

Lock Manager Data structure: a multilist

• Need access to lock entry by lock name or transaction id

• Some of these transactions are blocked on the lock

Multiple-Granularity Locks

 Hard to decide what granularity to lock

 tuples vs. pages vs. files

 Inefficient to have a million row locks to scan a relation

 Shouldn’t have to decide once and for all!

 Data containers are nested:

Tuples

Files

Pages

Database

contains

New Lock Modes, Protocol

 Allow transactions to lock at each level, but with a

special protocol using new intention locks

• Before locking an item, must set

intention locks on ancestors

• To lock an item with an S lock (X

lock), need an IS (IX) lock or stronger

on ancestors

• For unlock, go from specific to

general (i.e., bottom-up).

• SIX mode: Like S & IX at the same

time.

-- IS IX

--

IS

IX







 



S X





S

X

 







 



New Lock Modes, Protocol

 Lock manager doesn’t care: just make up lock names with table
name or item id, use new lock compatibility table

 Protocol makes client check higher level(s) first, then target
level, so lock manager itself (or its kernel part) has no
responsibility to know relationship between locks

-- IS IX

--

IS

IX







 



S X





S

X

 







 



