
Transaction Management:

Concurrency Control, part 2

CS634
Class 18, Apr 6, 2016

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

More Dynamic Databases

 If the set of DB objects changes, Strict 2PL using row or
page locks will not ensure serializability (locking whole
tables will work but is horribly slow)

 Example:

 T1 finds oldest sailor for each of rating=1 and rating=2

 T2 does an insertion and a deletion

1. T1 locks all pages with rating = 1, finds oldest sailor (age = 71)

2. Next, T2 inserts a new sailor; rating = 1, age = 96

3. T2 deletes oldest sailor with rating = 2 (age = 80), commits

4. T1 locks all pages with rating = 2, and finds oldest (age = 63)

 No serial schedule gives same outcome!

The “Phantom” Problem

 T1 implicitly assumes that it has locked the set of all

sailor records with rating = 1

 Assumption only holds if no sailor records are added while T1

is executing!

 Two mechanisms to address the problem

 Index locking

 Predicate locking

Another phantom example

 Table tasks has one row for each worker task, with

worker name, task name, number of hours

 Rule that no worker has more than 8 hours total

 Application A to add a task sums hours for worker, adds

task if it fits under 8 hours max

 T1 running A sees ‘Joe’ has 6 hours, adds task of 2 hours

 Concurrently, T2 running A sees ‘Joe’ has 6 hours, adds task of

1 hour.

 Joe ends up with 9 hours of work.

 Again, the problem is there is no lock on the set of rows

being examined to make a decision

Index Locking

 Assume index on the rating field

 T1 should lock the index page(s) containing the data

entries with rating = 1, and their immediate neighbors

 If there are no records with rating = 1, T1 must lock the index

page where such a data entry would be, if it existed!

 e.g., lock the page with rating = 0 and beginning of rating=2

 Or lock pages for just one extra data item on one side, if a

lock is understood to cover the key value plus gap to one side.

 If there is no suitable index, T1 must lock all data pages,

and lock the file to prevent new pages from being added

Index Locking

 Assume index on the rating field

 Row locking is the industry standard now

 T1 should lock all the data entries with rating = 1 and at
least one neighbor (depending on details of protocol)

 If there are no records with rating = 1, T1 must lock the entries
adjacent to where data entry would be, if it existed!

 e.g., lock the last entry with rating = 0 and beginning of
rating=2

 If there is no suitable index, T1 must lock all the rows and
lock the file to prevent new rows from being added, or
use a “table lock”.

Predicate Locking

 Grant lock on all records that satisfy some logical predicate

 But note that a general predicate can depend on data in the row:
salary > 50000 + 1000*years

 Or a whole table: salary > (select avg(salary) in emps)

 Index locking is a special case of predicate locking

 Index supports efficient implementation of the predicate lock

 Predicate is specified in WHERE clause

 In general, predicate locking is expensive to implement!

 Can avoid the runtime cost by using Repeatable Read isolation
level, but that opens up anomaly possibilities.

Index Locking, Blow by blow

 Index locking happens in the storage engine, based on FILE

calls coming from query processor as directed by the query

plan

 Example: Transaction T1 accesses a heap table with certain

index, gets row for certain index key value, say 100. Suppose

the next data entry is for another key, 102.

 Storage engine share-locks the accessed data entry for key 100,

guarding it and the gap between that key and the next key.

 Then if another transaction T2 tries to change the row with key 100,

can’t get necessary X lock, waits. Same with key 101.

 Original transaction T1 can ask for next key, get 102.

 But if another transaction updates row with key 102 (not guarded by

T1’s share lock), then then T1 has to wait for the next key.

Index Locking Scenario, cont.

 There is an underlying assumption in that story: that all

the accesses in fact use the index on this column.

 Well, the important thing is that all accesses that change

the column value go through the index. It’s OK for

another reader to access the value.

 An insert or delete need to change the index, so they are

naturally involved.

 An update to this column also needs to change the index,

in two places, so it also collides with the old lock.

 You can see this has to be checked out carefully!

Locking for B+ Trees

 Naïve solution

 Ignore tree structure, just lock its pages following 2PL

 Very poor performance!

 Root node (and many higher level nodes) become bottlenecks

 Every tree access begins at the root!

 Not needed anyway!

 Only row data needs 2PL (contents of tree)

 Tree structure also needs protection from concurrent access

 But only like other shared data of the server program

 Note this modern view is not covered in book

 See Graefe, A Survey of B-tree locking techniques (2010)

 B-tree locking is a huge challenge!

Locking vs. Latching
 To protect shared data in memory, multithreaded programs use

mutex (semaphores)
 API: enter_section/leave_section, or lock/unlock

 Every Java object contains a mutex, for convenience of Java programming:
underlies synchronized methods

 Database people call mutexes and related mechanisms “latches”

 Need background in multi-threaded programming to understand this
topic fully

 The tree structure needs mutex/latch protection

 Example: split node. No row data is changed, just the details in pages
in the buffer pool. No i/o is needed (can’t hold a latch across disk i/o
without ruining performance.)

 Latches can be provided by the same lock manager as does 2PL
locking, and can have share and exclusive types like locks.

 In these slides, will use “lock” in quotes to mean non-2PL
lock/latch…

Locking for B+ Trees (contd.)

 Searches

 Higher levels only direct searches for leaf pages

 Insertions

 Node on a path from root to modified leaf must be “locked” in

X mode only if a split can propagate up to it

 Similar point holds for deletions

 There are efficient locking protocols that keep the B-tree

healthy under concurrent access, and support 2PL on

rows

http://www.hpl.hp.com/techreports/2010/HPL-2010-9.pdf

A Simple Tree Locking Algorithm:
(“lock” here is really a latch on tree structure)

 Search
 Start at root and descend: “crabbing down the tree”

 repeatedly, get S “lock” for child then “unlock” parent, end up with S “lock” on
leaf page

 Get 2PL S lock on row, provide row pointer to caller

 Later, caller is done with reading row, arranges release of S “lock”

 Insert/Delete
 Start at root and descend, crabbing, obtaining X “locks” as needed

 Once child is “locked”, check if it is safe

 If child is safe, release “lock” on parent, leaving X “lock” on child

 Get 2PL X lock on place for new row/old row, insert/delete row, release “lock”

 Safe node: not about to split or coalesce
 Inserts: Node is not full

 Deletes: Node is not half-empty

 When control gets back to QP, transaction only has 2PL locks on rows

Difference from text

 The algorithm actions described in the text are valid, for

example, crabbing down the tree, worrying about full

nodes, etc.

 What’s different is that the locks for index nodes are

shorter lived than described in the text: only 2PL locks on

rows are kept until end of transaction, not any locks on

index nodes.

 Note that text uses locks and releases them before

commit, a sign that they are not actually Strict 2PL locks.

 Note the admission on pg. 564 that the text’s coverage

on this topic is “not state of the art”. Graefe’s paper is.

An Example

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:

Search 38*

Insert 45*

Insert 25*

Delete 38*

23

Insert 45 case

Crab down tree getting X “locks” (really latches)

“Xlock” A

“Xlock” B

B is safe, so “unXlock” A

“Xlock” C

C is unsafe, so can’t “unXlock” B now

“Xlock” E (page of rows)

E is safe, so “unXlock” C

Xlock row (2PL lock) for 45, copy out row or pin buffer, provide row

pointer to caller

“UnXLock” E

Return to QP with 2PL X lock on row with key 45 (or index entry and

row)

A Variation on Algorithms

 Search

 As before

 Insert/Delete

 Set “locks” as if for search, get to leaf, and set 2PL X lock on

leaf

 If leaf is not safe, release all “locks”, and restart using previous

Insert/Delete protocol

 This is what happens if the search down the tree happens on a

page that is not in buffer—don’t want to hold a latch across a

disk i/o (takes too long)

Lock Management

 Lock and unlock requests are handled by the lock manager (see Sec.
17.2.1)

 Lock table entry:

 Lock name/identifier

 Number of transactions currently holding a lock

 Type of lock held (shared or exclusive)

 Pointer to queue of lock requests

 Locking and unlocking have to be atomic operations (need mutex
protection)

 Lock table entries are kept in order, to prevent starvation (lots of
reads preventing a writer from ever getting a lock, etc.)

Lock Manager Data structure: a multilist

• Need access to lock entry by lock name or transaction id

• Some of these transactions are blocked on the lock

Multiple-Granularity Locks

 Hard to decide what granularity to lock

 tuples vs. pages vs. files

 Inefficient to have a million row locks to scan a relation

 Shouldn’t have to decide once and for all!

 Data containers are nested:

Tuples

Files

Pages

Database

contains

New Lock Modes, Protocol

 Allow transactions to lock at each level, but with a

special protocol using new intention locks

• Before locking an item, must set

intention locks on ancestors

• To lock an item with an S lock (X

lock), need an IS (IX) lock or stronger

on ancestors

• For unlock, go from specific to

general (i.e., bottom-up).

• SIX mode: Like S & IX at the same

time.

-- IS IX

--

IS

IX

S X

S

X

New Lock Modes, Protocol

 Lock manager doesn’t care: just make up lock names with table
name or item id, use new lock compatibility table

 Protocol makes client check higher level(s) first, then target
level, so lock manager itself (or its kernel part) has no
responsibility to know relationship between locks

-- IS IX

--

IS

IX

S X

S

X

