Transaction Management:
Concurrency Control, part 2

CS634
Class 18, Apr 6, 2016

Slides based on “Database Management Systems™ 3¢ ed, Ramakrishnan and Gehrke

The “Phantom” Problem

» TI implicitly assumes that it has locked the set of all
sailor records with rating = |

Assumption only holds if no sailor records are added while T
is executing!

» Two mechanisms to address the problem
Index locking
Predicate locking

Index Locking

» Assume index on the rating field
» TI should lock the index page(s) containing the data
entries with rating = 1, and their immediate neighbors

If there are no records with rating = 1, T| must lock the index
page where such a data entry would be, if it existed!

e.g., lock the page with rating = 0 and beginning of rating=2
Or lock pages for just one extra data item on one side, if a

lock is understood to cover the key value plus gap to one side.

» If there is no suitable index, T| must lock all data pages,
and lock the file to prevent new pages from being added

More Dynamic Databases

v

If the set of DB objects changes, Strict 2PL using row or
page locks will not ensure serializability (locking whole
tables will work but is horribly slow)
Example:
T1 finds oldest sailor for each of rating=I and rating=2
T2 does an insertion and a deletion
TI locks all pages with rating = 1, finds oldest sailor (age = 71)
Next, T2 inserts a new sailor; rating = |, age = 96
T2 deletes oldest sailor with rating = 2 (age = 80), commits
T1 locks all pages with rating = 2, and finds oldest (age = 63)

v

» No serial schedule gives same outcome!

Another phantom example

» Table tasks has one row for each worker task, with
worker name, task name, number of hours
» Rule that no worker has more than 8 hours total
» Application A to add a task sums hours for worker, adds
task if it fits under 8 hours max
TI running A sees ‘Joe’ has 6 hours,adds task of 2 hours
Concurrently, T2 running A sees ‘Joe’ has 6 hours, adds task of
| hour.
Joe ends up with 9 hours of work.
» Again, the problem is there is no lock on the set of rows
being examined to make a decision

Index Locking

» Assume index on the rating field
» Row locking is the industry standard now
» T1 should lock all the data entries with rating = 1 and at
least one neighbor (depending on details of protocol)
If there are no records with rating = |, T1 must lock the entries
adjacent to where data entry would be, if it existed!
e.g, lock the last entry with rating = 0 and beginning of
rating=2
» If there is no suitable index, T1 must lock all the rows and
lock the file to prevent new rows from being added, or
use a “table lock”.

Predicate Locking

» Grant lock on all records that satisfy some logical predicate

But note that a general predicate can depend on data in the row:
salary > 50000 + 1000*years

Or a whole table: salary > (select avg(salary) in emps)

» Index locking is a special case of predicate locking
Index supports efficient implementation of the predicate lock
Predicate is specified in WHERE clause

» In general, predicate locking is expensive to implement!

Can avoid the runtime cost by using Repeatable Read isolation
level, but that opens up anomaly possibilities.

Index Locking Scenario, cont.

» There is an underlying assumption in that story: that all
the accesses in fact use the index on this column.

» Well, the important thing is that all accesses that change
the column value go through the index. It's OK for
another reader to access the value.

» An insert or delete need to change the index, so they are
naturally involved.

» An update to this column also needs to change the index,
in two places, so it also collides with the old lock.

» You can see this has to be checked out carefully!

Locking vs. Latching

To protect shared data in memory, multithreaded programs use
mutex (semaphores)

API: enter_section/leave_section, or lock/unlock

Every Java object contains a mutex, for convenience of Java programming:
underlies synchronized methods

Database people call mutexes and related mechanisms “latches”
Need background in multi-threaded programming to understand this
topic fully
The tree structure needs mutex/latch protection
Example: split node. No row data is changed, just the details in pages
in the buffer pool. No i/o is needed (can’t hold a latch across disk i/o
without ruining performance.)
Latches can be provided by the same lock manager as does 2PL
locking, and can have share and exclusive types like locks.
In these slides, will use “lock” in quotes to mean non-2PL
lock/latch...

v

v v

v

v

Index Locking, Blow by blow

» Index locking happens in the storage engine, based on FILE
calls coming from query processor as directed by the query
plan

» Example: TransactionT| accesses a heap table with certain
index, gets row for certain index key value, say 100. Suppose
the next data entry is for another key, 102.

Storage engine share-locks the accessed data entry for key 100,
guarding it and the gap between that key and the next key.

Then if another transaction T2 tries to change the row with key 100,
can'’t get necessary X lock, waits. Same with key 101.

Orriginal transaction T| can ask for next key, get 102.

But if another transaction updates row with key 102 (not guarded by
TI’s share lock), then then T| has to wait for the next key.

Locking for B+ Trees

» Naive solution
Ignore tree structure, just lock its pages following 2PL

» Very poor performance!
Root node (and many higher level nodes) become bottlenecks
Every tree access begins at the root!

» Not needed anyway!
Only row data needs 2PL (contents of tree)
Tree structure also needs protection from concurrent access
But only like other shared data of the server program
Note this modern view is not covered in book
See (2010)
B-tree locking is a huge challenge!

Locking for B+ Trees (contd.)

» Searches
Higher levels only direct searches for leaf pages
» Insertions

Node on a path from root to modified leaf must be “locked” in
X mode only if a split can propagate up to it

Similar point holds for deletions

» There are efficient locking protocols that keep the B-tree
healthy under concurrent access, and support 2PL on
rows

http://www.hpl.hp.com/techreports/2010/HPL-2010-9.pdf

A Simple Tree Locking Algorithm:

(“lock” here is really a latch on tree structure)

» Search
Start at root and descend:“crabbing down the tree”
repeatedly,get S “lock” for child then “unlock” parent,end up with S “lock” on
leaf page
Get 2PL S lock on row, provide row pointer to caller
Later, caller is done with reading row, arranges release of S “lock”
» Insert/Delete
Start at root and descend, crabbing, obtaining X “locks” as needed
Once child is “locked”, check if it is safe
If child is safe, release “lock” on parent, leaving X “lock” on child
Get 2PL X lock on place for new row/old row, insert/delete row, release “lock”
» Safe node:not about to split or coalesce
Inserts: Node is not full
Deletes: Node is not half-empty
» When control gets back to QP, transaction only has 2PL locks on rows

An Example

EXll - |~
Search 38*
Insert 45*
Insert 25*
/E I B Delete 38*

arnvany

A Variation on Algorithms

» Search
As before
» Insert/Delete

Set “locks” as if for search, get to leaf, and set 2PL X lock on
leaf

If leaf is not safe, release all “locks”,and restart using previous
Insert/Delete protocol

» This is what happens if the search down the tree happens on a
page that is not in buffer—don’t want to hold a latch across a
disk i/o (takes too long)

Difference from text

» The algorithm actions described in the text are valid, for
example, crabbing down the tree, worrying about full
nodes, etc.

What'’s different is that the locks for index nodes are
shorter lived than described in the text: only 2PL locks on
rows are kept until end of transaction, not any locks on
index nodes.

v

v

Note that text uses locks and releases them before
commit, a sign that they are not actually Strict 2PL locks.

v

Note the admission on pg. 564 that the text’s coverage
on this topic is “not state of the art”. Graefe’s paper is.

Insert 45 case

Crab down tree getting X “locks” (really latches)

“Xlock” A

“Xlock” B

B is safe, so “unXlock” A

“Xlock” C

Cis unsafe,so can’t “unXlock” B now

“Xlock” E (page of rows)

E is safe, so “unXlock” C

Xlock row (2PL lock) for 45, copy out row or pin buffer, provide row
pointer to caller

“UnXLock” E

Return to QP with 2PL X lock on row with key 45 (or index entry and
row)

Lock Management

Lock and unlock requests are handled by the lock manager (see Sec.
17.2.1)

v

Lock table entry:
Lock name/identifier
Number of transactions currently holding a lock
Type of lock held (shared or exclusive)
Pointer to queue of lock requests

v

Locking and unlocking have to be atomic operations (need mutex
protection)

v

Lock table entries are kept in order, to prevent starvation (lots of
reads preventing a writer from ever getting a lock, etc.)

Lock Manager Data structure: a multilist Multiple-Granularity Locks

» Hard to decide what granularity to lock

tuples vs. pages vs. files

Inefficient to have a million row locks to scan a relation
» Shouldn’t have to decide once and for all!
» Data containers are nested:

Database
. Files
contains

Pages
L Tuples

« Need access to lock entry by lock name or transaction id

* Some of these transactions are blocked on the lock
New Lock Modes, Protocol New Lock Modes, Protocol

» Lock manager doesn’t care: just make up lock names with table

R . .
Allow transactions to lock at each level, but with a name o item id, use new lock compatiblity table

special protocol using new intention locks » Protocol makes client check higher level(s) first, then target
A . level, so lock manager itself (or its kernel part) has no
+ Before locking an item, must set responsibility to know relationship between locks
intention locks on ancestors
. . - |IS|IX|S | X ~l1s| x|/ s | X
To lock an item with an S lock (X
lock), need an IS (IX) lock or stronger | - |\ |~ |V | V| S IV IV IOV IOV Y
on ancestors N IS|N |V [N |V S|V N[NV
« For unlock, go from specific to -
general (i.e., bottom-up). IX| V[V IX| VNV
- SIXmode: Like S & IX atthesame | S |V |V y s v | N
time. x|V x|V

