
Transaction Management:

Concurrency Control, part 3

CS634
Class 19, Apr 11, 2016

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

class20.pdf

Lock Management

 Lock and unlock requests are handled by the lock manager (see Sec.
17.2.1)

 Lock table entry:

 Lock name/identifier

 Number of transactions currently holding a lock

 Type of lock held (shared or exclusive)

 Pointer to queue of lock requests

 Locking and unlocking have to be atomic operations (need mutex
protection)

 Lock table entries are kept in order, to prevent starvation (lots of
reads preventing a writer from ever getting a lock, etc.)

Lock Manager Data structure: a multilist

• Need access to lock entry by lock name or transaction id

• Some of these transactions are blocked on the lock

Multiple-Granularity Locks

 Hard to decide what granularity to lock

 tuples vs. pages vs. files

 Inefficient to have a million row locks to scan a relation

 Shouldn’t have to decide once and for all!

 Data containers are nested:

Tuples

Files

Pages

Database

contains

New Lock Modes, Protocol

 Allow transactions to lock at each level, but with a

special protocol using new intention locks

• Before locking an item, must set

intention locks on ancestors

• To lock an item with an S lock (X

lock), need an IS (IX) lock or stronger

on ancestors

• For unlock, go from specific to

general (i.e., bottom-up).

• SIX mode: Like S & IX at the same

time.

-- IS IX

--

IS

IX

S X

S

X

New Lock Modes, Protocol

 Lock manager doesn’t care: just make up lock names with table
name or item id, use new lock compatibility table

 Protocol makes client check higher level(s) first, then target
level, so lock manager itself (or its kernel part) has no
responsibility to know relationship between locks

-- IS IX

--

IS

IX

S X

S

X

New Lock Modes, strength of locks

• Before locking an item, must set intention

locks (IS/IX) on ancestors, or stronger locks

• IS is the weakest lock: it only blocks an X-

locker (of a different transaction)

• IX is stronger than IS because it blocks an S-

locker or an X-locker

• X is stronger than any other lock: it blocks all

locks attempts by other transactions

• IX and S are not comparable this way

• SIX: blocks all but IS locks

-- IS IX

--

IS

IX

S X

S

X

Multiple Granularity Lock Protocol

 Each transaction starts from the root of the hierarchy

 To get S or IS lock on a node, must hold IS on parent

node, or the stronger S or IX or X locks

 To get X or IX or SIX on a node, must hold IX or the

stronger SIX or X on parent node.

 Must release locks in bottom-up order

Examples: two levels, relation and tuples

 T1 scans R, and updates a few tuples:

 T1 gets an SIX lock on R, then repeatedly gets an S lock on

tuples of R, and occasionally upgrades to X on the tuples.

 T2 uses an index to read only part of R:

 T2 gets an IS lock on R, and repeatedly gets an S lock on

tuples of R. If overlapping with T1, gets the IS lock on R, but

may block on X-locked tuples.

 T3 reads all of R:

 T3 gets an S lock on R. If overlapping with T1,

will block until T1’s SIX lock is released

 OR, T3 could behave like T2; can

use lock escalation to decide which.

-- IS IX

--

IS

IX

S X

S

X

Isolation Levels in Practice

 Databases default to RC, read-committed, so many apps

run that way, can have their read data changed, and

phantoms

 Web apps (JEE, anyway) have a hard time overriding RC,

so most are running at RC

 The 2PL locking scheme we studied was for RR,

repeatable read: transaction takes long term read and

write locks

 Long term = until commit of that transaction

Read Committed (RC) Isolation

 2PL can be modified for RC: take long-term write locks
but not long term read locks

 Reads are atomic as operations, but that’s it

 Lost updates can happen in RC: system takes 2PC locks
only for the write operations:

R1(A)R2(A)W2(B)C2W1(B)C1

R1(A)R2(A)X2(B)W2(B)C2X1(B)W1(B)C1 (RC isolation)

 Update statements are atomic, so that case of read-then-
write is safe even at RC

 Update T set A = A + 100 (safe at RC isolation)

 Remember to use update when possible!

Syntax for SQL

SET TRANSACTION ISOLATION LEVEL

SERIALIZABLE READ WRITE

SET TRANSACTION ISOLATION LEVEL

REPEATABLE READ READ ONLY

 Note:

 READ UNCOMITTED cannot be READ WRITE

13

More on setting transaction properties

Embedded SQL

EXEC SQL SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

JDBC

conn.setAutoCommit(false);

conn.setTransactionIsolation

(Connection.TRANSACTION_ISOLATION_SERIALIZABLE);

14

Snapshot Isolation (SI)

 Multiversion Concurrency Control Mechanism (MVCC)

 This means the database holds more than one value for a data item at the
same time

 Used in Oracle, PostgreSQL (as option), MS SQL Server (as option),
others

 Readers never conflict with writers unlike traditional DBMS (e.g., IBM
DB2)! Read-only transactions run fast.

 Does not guarantee “real” serializability, unless fixed up, i.e., has anomalies.
“Serializable Snapshot Isolation” available now in Postgres. Oracle allows SI
anomalies.

 But: avoids all anomalies in the ANSI table, so seems OK.

 We found in use at Microsoft in 1993, published as example of MVCC

Snapshot Isolation - Basic Idea:

 Every transaction reads from its own snapshot (copy) of

the database (will be created when the transaction starts,

or reconstructed from the undo log).

 Writes are collected into a writeset (WS), not visible to

concurrent transactions.

 Two transactions are considered to be concurrent if one

starts (takes a snapshot) while the other is in progress.

First Committer Wins Rule of SI

 At the commit time of a transaction its WS is compared

to those of concurrent committed transactions.

 If there is no conflict (overlapping), then the WS can be

applied to stable storage and is visible to transactions that

begin afterwards.

 However, if there is a conflict with the WS of a

concurrent, already committed transaction, then the

transaction must be aborted.

 That’s the “First Committer Wins Rule“

 Actually Oracle uses first updater wins, basically same

idea, but doesn’t require separate WS

Write Skew Anomaly of SI

 In MVCC, data items need subscripts to say which version

is being considered

 Zero version: original database value

 T1 writes new value of X, X1

 T2 writes new value of Y, Y2

 Write skew anomaly schedule:

R1(X0) R2(X0) R1(Y0) R2(Y0,) W1(X1) C1 W2(Y2) C2

 WritesetsWS(T1) = {X}, WS(T2) = {Y}, do not overlap,

so both commit.

 So what’s wrong—where’s the anomaly?

Write Skew Anomaly of SI

R1(X0) R2(X0) R1(Y0) R2(Y0,) W1(X1) C1 W2(Y2) C2

 Scenario:

 X = husband’s balance, orig 100,

 Y = wife’s balance, orig 100.

 Bank allows withdrawals up to combined balance

 Rule: X + Y >= 0

 Both withdraw 150, thinking OK, end up with -50 and -50.

 Easy to make this happen in Oracle at “Serializable”

isolation.

 See conflicts, cycle in PG, can’t happen with full 2PL

 Can happen with RC/locking

How can an Oracle app handle this?

 If X+Y >= 0 is needed as a constraint, it can be

“materialized” as sum in another column value.

 Old program: R(X)R(X-spouse)W(X)C

 New program: R(X)R(X-spouse) W(sum) W(X)C

 So schedule will have W(sum) in both transactions, and

sum will be in both Writesets, so second committer

aborts.

Oracle, Postgres: new failure to handle

 Recall deadlock-abort handling: retry the aborted

transaction

 With SI, get "can't serialize access“

 ORA-08177: can't serialize access for this transaction

 Means another transaction won for a contended write

 App handles this error like deadlock-abort: just retry

transaction, up to a few times

 This only happens when you set serializable isolation level

Other anomalies under SI

 Oldest sailors example

 Both concurrent transactions see original sailor data in

snapshots, plus own updates

 Updates are on different rows, so both commit

 Neither sees the other’s update

 So not serializable: one should see one update, other should

see two updates.

 Task Registry example:

 Both concurrent transactions see original state with 6 hours

available for Joe

 Both insert new task for Joe

 Inserts involve different rows, so both commit

Fixing the task registry phantom problem

 Following the idea of the simple write skew, we can materialize

the constraint “workhours <= 8”

 Add a workhours column to worker table

 Old program:

 if sum(hours-for-x)+newhours<=8

 insert new task

 New program:

 if workhours-for-x + newhours <=8

 { update worker set workhours = workhours + newhours…

 insert new task

 }

Fixing the Oldest sailor example

 If the oldest sailor is important to the app, materialize it!

Create table oldestsailor (rating int primary key, sid int)

Oracle Read Committed Isolation

 READ COMMITTED is the default isolation level for both

Oracle and PostgreSQL.

 A new snapshot is taken for every issued SQL statement

(every statement sees the latest committed values).

 If a transaction T2 running in READ COMMITTED mode

tries to update a row which was already updated by a

concurrent transaction T1, then T2 gets blocked until T1

has either committed or aborted

 Nearly same as 2PL/RC, though all reads occur effectively

at the same time for the statement.

Transaction Management:

Crash Recovery

CS634

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

ACID Properties

Transaction Management must fulfill four requirements:

1. Atomicity: either all actions within a transaction are carried
out, or none is

 Only actions of committed transactions must be visible

2. Consistency: concurrent execution must leave DBMS in
consistent state

3. Isolation: each transaction is protected from effects of other
concurrent transactions

 Net effect is that of some sequential execution

4. Durability: once a transaction commits, DBMS changes will
persist

 Conversely, if a transaction aborts/is aborted, there are no effects

27

Recovery Manager

 Crash recovery

 Ensure that atomicity is preserved if the system crashes while one

or more transactions are still incomplete

 Main idea is to keep a log of operations; every action is logged

before its page updates reach disk (Write-Ahead Log or WAL)

 The Recovery Manager guarantees Atomicity & Durability

28

Motivation

 Atomicity:

 Transactions may abort – must rollback their actions

 Durability:

 What if DBMS stops running – e.g., power failure?

crash!Desired Behavior after system
restarts:

– T1, T2 & T3 should be
durable

– T4 & T5 should be
aborted (effects not seen)

T1
T2
T3
T4
T5

Assumptions

 Concurrency control is in effect

 Strict 2PL

 Updates are happening “in place”

 Data overwritten on (deleted from) the disk

 A simple scheme is needed

 A protocol that is too complex is difficult to implement

 Performance is also an important issue

