
Transaction Management:

Concurrency Control, part 3

CS634
Class 19, Apr 11, 2016

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

class20.pdf

Lock Management

 Lock and unlock requests are handled by the lock manager (see Sec.
17.2.1)

 Lock table entry:

 Lock name/identifier

 Number of transactions currently holding a lock

 Type of lock held (shared or exclusive)

 Pointer to queue of lock requests

 Locking and unlocking have to be atomic operations (need mutex
protection)

 Lock table entries are kept in order, to prevent starvation (lots of
reads preventing a writer from ever getting a lock, etc.)

Lock Manager Data structure: a multilist

• Need access to lock entry by lock name or transaction id

• Some of these transactions are blocked on the lock

Multiple-Granularity Locks

 Hard to decide what granularity to lock

 tuples vs. pages vs. files

 Inefficient to have a million row locks to scan a relation

 Shouldn’t have to decide once and for all!

 Data containers are nested:

Tuples

Files

Pages

Database

contains

New Lock Modes, Protocol

 Allow transactions to lock at each level, but with a

special protocol using new intention locks

• Before locking an item, must set

intention locks on ancestors

• To lock an item with an S lock (X

lock), need an IS (IX) lock or stronger

on ancestors

• For unlock, go from specific to

general (i.e., bottom-up).

• SIX mode: Like S & IX at the same

time.

-- IS IX

--

IS

IX







 



S X





S

X

 







 



New Lock Modes, Protocol

 Lock manager doesn’t care: just make up lock names with table
name or item id, use new lock compatibility table

 Protocol makes client check higher level(s) first, then target
level, so lock manager itself (or its kernel part) has no
responsibility to know relationship between locks

-- IS IX

--

IS

IX







 



S X





S

X

 







 



New Lock Modes, strength of locks

• Before locking an item, must set intention

locks (IS/IX) on ancestors, or stronger locks

• IS is the weakest lock: it only blocks an X-

locker (of a different transaction)

• IX is stronger than IS because it blocks an S-

locker or an X-locker

• X is stronger than any other lock: it blocks all

locks attempts by other transactions

• IX and S are not comparable this way

• SIX: blocks all but IS locks

-- IS IX

--

IS

IX







 



S X





S

X

 







 



Multiple Granularity Lock Protocol

 Each transaction starts from the root of the hierarchy

 To get S or IS lock on a node, must hold IS on parent

node, or the stronger S or IX or X locks

 To get X or IX or SIX on a node, must hold IX or the

stronger SIX or X on parent node.

 Must release locks in bottom-up order

Examples: two levels, relation and tuples

 T1 scans R, and updates a few tuples:

 T1 gets an SIX lock on R, then repeatedly gets an S lock on

tuples of R, and occasionally upgrades to X on the tuples.

 T2 uses an index to read only part of R:

 T2 gets an IS lock on R, and repeatedly gets an S lock on

tuples of R. If overlapping with T1, gets the IS lock on R, but

may block on X-locked tuples.

 T3 reads all of R:

 T3 gets an S lock on R. If overlapping with T1,

will block until T1’s SIX lock is released

 OR, T3 could behave like T2; can

use lock escalation to decide which.

-- IS IX

--

IS

IX







 



S X





S

X

 







 



Isolation Levels in Practice

 Databases default to RC, read-committed, so many apps

run that way, can have their read data changed, and

phantoms

 Web apps (JEE, anyway) have a hard time overriding RC,

so most are running at RC

 The 2PL locking scheme we studied was for RR,

repeatable read: transaction takes long term read and

write locks

 Long term = until commit of that transaction

Read Committed (RC) Isolation

 2PL can be modified for RC: take long-term write locks
but not long term read locks

 Reads are atomic as operations, but that’s it

 Lost updates can happen in RC: system takes 2PC locks
only for the write operations:

R1(A)R2(A)W2(B)C2W1(B)C1

R1(A)R2(A)X2(B)W2(B)C2X1(B)W1(B)C1 (RC isolation)

 Update statements are atomic, so that case of read-then-
write is safe even at RC

 Update T set A = A + 100 (safe at RC isolation)

 Remember to use update when possible!

Syntax for SQL

SET TRANSACTION ISOLATION LEVEL

SERIALIZABLE READ WRITE

SET TRANSACTION ISOLATION LEVEL

REPEATABLE READ READ ONLY

 Note:

 READ UNCOMITTED cannot be READ WRITE

13

More on setting transaction properties

Embedded SQL

EXEC SQL SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

JDBC

conn.setAutoCommit(false);

conn.setTransactionIsolation

(Connection.TRANSACTION_ISOLATION_SERIALIZABLE);

14

Snapshot Isolation (SI)

 Multiversion Concurrency Control Mechanism (MVCC)

 This means the database holds more than one value for a data item at the
same time

 Used in Oracle, PostgreSQL (as option), MS SQL Server (as option),
others

 Readers never conflict with writers unlike traditional DBMS (e.g., IBM
DB2)! Read-only transactions run fast.

 Does not guarantee “real” serializability, unless fixed up, i.e., has anomalies.
“Serializable Snapshot Isolation” available now in Postgres. Oracle allows SI
anomalies.

 But: avoids all anomalies in the ANSI table, so seems OK.

 We found in use at Microsoft in 1993, published as example of MVCC

Snapshot Isolation - Basic Idea:

 Every transaction reads from its own snapshot (copy) of

the database (will be created when the transaction starts,

or reconstructed from the undo log).

 Writes are collected into a writeset (WS), not visible to

concurrent transactions.

 Two transactions are considered to be concurrent if one

starts (takes a snapshot) while the other is in progress.

First Committer Wins Rule of SI

 At the commit time of a transaction its WS is compared

to those of concurrent committed transactions.

 If there is no conflict (overlapping), then the WS can be

applied to stable storage and is visible to transactions that

begin afterwards.

 However, if there is a conflict with the WS of a

concurrent, already committed transaction, then the

transaction must be aborted.

 That’s the “First Committer Wins Rule“

 Actually Oracle uses first updater wins, basically same

idea, but doesn’t require separate WS

Write Skew Anomaly of SI

 In MVCC, data items need subscripts to say which version

is being considered

 Zero version: original database value

 T1 writes new value of X, X1

 T2 writes new value of Y, Y2

 Write skew anomaly schedule:

R1(X0) R2(X0) R1(Y0) R2(Y0,) W1(X1) C1 W2(Y2) C2

 WritesetsWS(T1) = {X}, WS(T2) = {Y}, do not overlap,

so both commit.

 So what’s wrong—where’s the anomaly?

Write Skew Anomaly of SI

R1(X0) R2(X0) R1(Y0) R2(Y0,) W1(X1) C1 W2(Y2) C2

 Scenario:

 X = husband’s balance, orig 100,

 Y = wife’s balance, orig 100.

 Bank allows withdrawals up to combined balance

 Rule: X + Y >= 0

 Both withdraw 150, thinking OK, end up with -50 and -50.

 Easy to make this happen in Oracle at “Serializable”

isolation.

 See conflicts, cycle in PG, can’t happen with full 2PL

 Can happen with RC/locking

How can an Oracle app handle this?

 If X+Y >= 0 is needed as a constraint, it can be

“materialized” as sum in another column value.

 Old program: R(X)R(X-spouse)W(X)C

 New program: R(X)R(X-spouse) W(sum) W(X)C

 So schedule will have W(sum) in both transactions, and

sum will be in both Writesets, so second committer

aborts.

Oracle, Postgres: new failure to handle

 Recall deadlock-abort handling: retry the aborted

transaction

 With SI, get "can't serialize access“

 ORA-08177: can't serialize access for this transaction

 Means another transaction won for a contended write

 App handles this error like deadlock-abort: just retry

transaction, up to a few times

 This only happens when you set serializable isolation level

Other anomalies under SI

 Oldest sailors example

 Both concurrent transactions see original sailor data in

snapshots, plus own updates

 Updates are on different rows, so both commit

 Neither sees the other’s update

 So not serializable: one should see one update, other should

see two updates.

 Task Registry example:

 Both concurrent transactions see original state with 6 hours

available for Joe

 Both insert new task for Joe

 Inserts involve different rows, so both commit

Fixing the task registry phantom problem

 Following the idea of the simple write skew, we can materialize

the constraint “workhours <= 8”

 Add a workhours column to worker table

 Old program:

 if sum(hours-for-x)+newhours<=8

 insert new task

 New program:

 if workhours-for-x + newhours <=8

 { update worker set workhours = workhours + newhours…

 insert new task

 }

Fixing the Oldest sailor example

 If the oldest sailor is important to the app, materialize it!

Create table oldestsailor (rating int primary key, sid int)

Oracle Read Committed Isolation

 READ COMMITTED is the default isolation level for both

Oracle and PostgreSQL.

 A new snapshot is taken for every issued SQL statement

(every statement sees the latest committed values).

 If a transaction T2 running in READ COMMITTED mode

tries to update a row which was already updated by a

concurrent transaction T1, then T2 gets blocked until T1

has either committed or aborted

 Nearly same as 2PL/RC, though all reads occur effectively

at the same time for the statement.

Transaction Management:

Crash Recovery

CS634

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

ACID Properties

Transaction Management must fulfill four requirements:

1. Atomicity: either all actions within a transaction are carried
out, or none is

 Only actions of committed transactions must be visible

2. Consistency: concurrent execution must leave DBMS in
consistent state

3. Isolation: each transaction is protected from effects of other
concurrent transactions

 Net effect is that of some sequential execution

4. Durability: once a transaction commits, DBMS changes will
persist

 Conversely, if a transaction aborts/is aborted, there are no effects

27

Recovery Manager

 Crash recovery

 Ensure that atomicity is preserved if the system crashes while one

or more transactions are still incomplete

 Main idea is to keep a log of operations; every action is logged

before its page updates reach disk (Write-Ahead Log or WAL)

 The Recovery Manager guarantees Atomicity & Durability

28

Motivation

 Atomicity:

 Transactions may abort – must rollback their actions

 Durability:

 What if DBMS stops running – e.g., power failure?

crash!Desired Behavior after system
restarts:

– T1, T2 & T3 should be
durable

– T4 & T5 should be
aborted (effects not seen)

T1
T2
T3
T4
T5

Assumptions

 Concurrency control is in effect

 Strict 2PL

 Updates are happening “in place”

 Data overwritten on (deleted from) the disk

 A simple scheme is needed

 A protocol that is too complex is difficult to implement

 Performance is also an important issue

