class20.pdf

Transaction Management:
Concurrency Control, part 3

CS634
Class 19, Apr 11, 2016

Slides based on “Database Management Systems™ 3¢ ed, Ramakrishnan and Gehrke

Lock Manager Data structure: a multilist

* Need access to lock entry by lock name or transaction id
« Some of these transactions are blocked on the lock

New Lock Modes, Protocol

» Allow transactions to lock at each level, but with a
special protocol using new intention locks

- Before locking an item, must set

intention locks on ancestors

- [IS]IX]|S

- Tolock an item with an S lock (X

lock), need an IS (1X) lock or stronger | —- | v |~ [V | ¥

c;n anclestirs . o sl vVl
- For unlock, go from specific to

general (i.e., bottom-up). IX| V[V
. SIX mode: Like S & IX atthesame | S |V |V V

time. x|V

Lock Management

Lock and unlock requests are handled by the lock manager (see Sec.
17.2.1)

v

Lock table entry:
Lock name/identifier
Number of transactions currently holding a lock
Type of lock held (shared or exclusive)
Pointer to queue of lock requests

v

Locking and unlocking have to be atomic operations (need mutex
protection)

v

Lock table entries are kept in order, to prevent starvation (lots of
reads preventing a writer from ever getting a lock, etc.)

Multiple-Granularity Locks

» Hard to decide what granularity to lock

tuples vs. pages vs. files

Inefficient to have a million row locks to scan a relation
» Shouldn’t have to decide once and for all!
» Data containers are nested:

Database

. Files
contains

Pages

Tuples

New Lock Modes, Protocol

» Lock manager doesn’t care: just make up lock names with table
name or item id, use new lock compatibility table

» Protocol makes client check higher level(s) first, then target
level, so lock manager itself (or its kernel part) has no
responsibility to know relationship between locks

~|1s|IX|s | X
VNV VY
IS|V V[V]
IX| V|V A
S|V |V v
x|V

New Lock Modes, strength of locks

Before locking an item, must set intention - |IS| IX| S
locks (1S/1X) on ancestors, or stronger locks

IS is the weakest lock: it only blocks an X- N NN
locker (of a different transaction) | |

I1X is stronger than 1S because it blocks an S- 1S VIV N
locker or an X-locker IX| N A A

X is stronger than any other lock: it blocks all

locks attempts by other transactions s |V N Vv
IX and S are not comparable this way X \/

SIX: blocks all but IS locks

Examples: two levels, relation and tuples

» TI scans R, and updates a few tuples:
T1 gets an SIX lock on R, then repeatedly gets an S lock on
tuples of R, and occasionally upgrades to X on the tuples.

» T2 uses an index to read only part of R:

T2 gets an IS lock on R, and repeatedly gets an S lock on
tuples of R. If overlapping with T, gets the IS lock on R, but

may block on X-locked tuples. ~lis|iX's

» T3 reads all of R:

T3 gets an S lock on R. If overlapping with T, | g

will block until T1’s SIX lock is released x| A
OR, T3 could behave like T2; can s
use to decide which. x|

Read Committed (RC) Isolation

2PL can be modified for RC: take long-term write locks
but not long term read locks

Reads are atomic as operations, but that’s it

Lost updates can happen in RC: system takes 2PC locks
only for the write operations:

R1(A)R2(A)W2(B)C2WI(B)CI
R1(A)R2(A)X2(B)W2(B)C2XI(B)WI(B)CI (RCisolation)
Update statements are atomic, so that case of read-then-

write is safe even at RC
Update T set A=A + 100 (safe at RC isolation)
Remember to use update when possible!

v

v v

v

v v

Multiple Granularity Lock Protocol

» Each transaction starts from the root of the hierarchy

» To get S or IS lock on a node, must hold IS on parent
node, or the stronger S or IX or X locks

» To get X or IX or SIX on a node, must hold IX or the
stronger SIX or X on parent node.

» Must release locks in bottom-up order

Isolation Levels in Practice

v

Databases default to RC, read-committed, so many apps
run that way, can have their read data changed, and
phantoms

v

Web apps (JEE, anyway) have a hard time overriding RC,
so most are running at RC

v

The 2PL locking scheme we studied was for RR,
repeatable read: transaction takes long term read and
write locks

v

Long term = until commit of that transaction

Syntax for SQL

SET TRANSACTION ISOLATION LEVEL
SERIALIZABLE READ WRITE

SET TRANSACTION ISOLATION LEVEL
REPEATABLE READ READ ONLY

» Note:
READ UNCOMITTED cannot be READ WRITE

More on setting transaction properties

Embedded SQL
EXEC SQL SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

JDBC
conn.setAutoCommit(false);
conn.setTransactionlsolation
(Connection. TRANSACTION_ISOLATION_SERIALIZABLE);

Snapshot Isolation - Basic Idea:

» Every transaction reads from its own snapshot (copy) of
the database (will be created when the transaction starts,
or reconstructed from the undo log).

» Writes are collected into a writeset (WS), not visible to
concurrent transactions.

» Two transactions are considered to be concurrent if one
starts (takes a snapshot) while the other is in progress.

Write Skew Anomaly of SI

» In MVCC, data items need subscripts to say which version
is being considered
Zero version: original database value
T1 writes new value of X, X,
T2 writes new value of Y, Y,

» Write skew anomaly schedule:
R (Xo) Ra(Xo) R(Yo) Ry(Yor) Wi (X)) € Wi(Y) C,

» Writesets WS(TI) = {X}, WS(T2) = {Y}, do not overlap,
so both commit.
» So what’s wrong—where’s the anomaly?

Snapshot Isolation (SI)

Multiversion Concurrency Control Mechanism (MVCC)

This means the database holds more than one value for a data item at the
same time

Used in Oracle, PostgreSQL (as option), MS SQL Server (as option),
others

Readers never conflict with writers unlike traditional DBMS (e.g., IBM
DB2)! Read-only transactions run fast.

Does not guarantee “real” serializability, unless fixed up, i.e., has anomalies.
“Serializable Snapshot Isolation” available now in Postgres. Oracle allows SI
anomalies.

But: avoids all anomalies in the ANSI table, so seems OK.
We found in use at Microsoftin 1993, published as example of MVCC

First Committer Wins Rule of SI

» At the commit time of a transaction its WS is compared
to those of concurrent committed transactions.

v

If there is no conflict (overlapping), then the WS can be
applied to stable storage and is visible to transactions that
begin afterwards.

v

However, if there is a conflict with the WS of a
concurrent, already committed transaction, then the
transaction must be aborted.

That'’s the “First Committer Wins Rule*

v v

Actually Oracle uses first updater wins, basically same
idea, but doesn’t require separate WS

Write Skew Anomaly of SI
R;(Xo) Ra(Xo) Ri(Yo) Ry(Yo)) Wi (X)) € Wy(Y3) G,
» Scenario:
X = husband’s balance, orig 100,
Y = wife’s balance, orig 100.
Bank allows withdrawals up to combined balance
Rule: X +Y >=0
Both withdraw 150, thinking OK, end up with -50 and -50.
» Easy to make this happen in Oracle at “Serializable”
isolation.
» See conflicts, cycle in PG, can’t happen with full 2PL
» Can happen with RC/locking

How can an Oracle app handle this?

» If X+Y >= 0 is needed as a constraint, it can be
“materialized” as sum in another column value.

» Old program: R(X)R(X-spouse)W(X)C

» New program: R(X)R(X-spouse) W(sum) W(X)C

» So schedule will have W(sum) in both transactions,and
sum will be in both Writesets, so second committer
aborts.

Other anomalies under SI

» Oldest sailors example
Both concurrent transactions see original sailor data in
snapshots, plus own updates
Updates are on different rows, so both commit
Neither sees the other’s update
So not serializable: one should see one update, other should
see two updates.

» Task Registry example:

Both concurrent transactions see original state with 6 hours
available for Joe

Both insert new task for Joe
Inserts involve different rows, so both commit

Fixing the Oldest sailor example

» If the oldest sailor is important to the app, materialize it!

Create table oldestsailor (rating int primary key, sid int)

Oracle, Postgres: new failure to handle

» Recall deadlock-abort handling: retry the aborted
transaction
» With SI, get "can't serialize access*
ORA-08177: can't serialize access for this transaction
Means another transaction won for a contended write
» App handles this error like deadlock-abort:just retry
transaction, up to a few times
» This only happens when you set serializable isolation level

Fixing the task registry phantom problem

» Following the idea of the simple write skew, we can materialize
the constraint “workhours <= 8”

» Add a workhours column to worker table

» Old program:

» if sum(hours-for-x)+newhours<=8

» insert new task

» New program:

» if workhours-for-x + newhours <=8

» { update worker set workhours = workhours + newhours...

» insert new task

r}

Oracle Read Committed Isolation

READ COMMITTED is the default isolation level for both
Oracle and PostgreSQL.

A new snapshot is taken for every issued SQL statement
(every statement sees the latest committed values).

If a transaction T2 running in READ COMMITTED mode
tries to update a row which was already updated by a
concurrent transaction T |, then T2 gets blocked until T
has either committed or aborted

v

v

v

v

Nearly same as 2PL/RC, though all reads occur effectively
at the same time for the statement.

Transaction Management:
Crash Recovery

CS634

Slides based on “Database Management Systems” 3/ ed, Ramakrishnan and Gehrke

Recovery Manager

» Crash recovery

Ensure that atomicity is preserved if the system crashes while one
or more transactions are still incomplete

Main idea is to keep a log of operations; every action is logged
before its page updates reach disk (Write-Ahead Log or WAL)

» The Recovery Manager guarantees Atomicity & Durability

Assumptions

» Concurrency control is in effect
Strict 2PL

» Updates are happening “in place”
Data overwritten on (deleted from) the disk

» A simple scheme is needed
A protocol that is too complex is difficult to implement
Performance is also an important issue

ACID Properties

Transaction Management must fulfill four requirements:

I Atomicity: either all actions within a transaction are carried

out, or none is

Only actions of committed transactions must be visible

2. Consistency: concurrent execution must leave DBMS in
consistent state

3. Isolation: each transaction is protected from effects of other
concurrent transactions
Net effect is that of some sequential execution

4. Durability: once a transaction commits, DBMS changes will
persist
Conversely, if a transaction aborts/is aborted, there are no effects

v

27

Motivation
» Atomicity:
Transactions may abort — must rollback their actions
» Durability:
What if DBMS stops running — e.g., power failure?

Desired Behavior after system crash!
restarts: T - 1
- T1, T2 & T3should be | T2 |
durable T3 |
T4 1
- T4 & T5 should be —_—
T5 I

aborted (effects not seen)

