
Transaction Management:

Crash Recovery (Chap. 18), part 1

CS634
Class 20, Apr 13, 2016

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

ACID Properties

Transaction Management must fulfill four requirements:

1. Atomicity: either all actions within a transaction are carried
out, or none is

 Only actions of committed transactions must be visible

2. Consistency: concurrent execution must leave DBMS in
consistent state

3. Isolation: each transaction is protected from effects of other
concurrent transactions

 Net effect is that of some sequential execution

4. Durability: once a transaction commits, DBMS changes will
persist

 Conversely, if a transaction aborts/is aborted, there are no effects

2

Recovery Manager

 Crash recovery

 Ensure that atomicity is preserved if the system crashes while one

or more transactions are still incomplete

 Main idea is to keep a log of operations; every action is logged

before its page updates reach disk (Write-Ahead Log or WAL)

 The Recovery Manager guarantees Atomicity & Durability

 “One of hardest components of a DBMS to design and

implement”, pg. 580

 One reason: need calls to it from all over the storage manager

3

Motivation

 Atomicity:

 Transactions may abort – must rollback their actions

 Durability:

 What if DBMS stops running – e.g., power failure?

crash!Desired Behavior after system
restarts:

– T1, T2 & T3 should be
durable

– T4 & T5 should be
aborted (effects not seen)

T1
T2
T3
T4
T5

Assumptions

 Concurrency control is in effect

 Strict 2PL

 Updates are happening “in place”

 Data overwritten on (deleted from) the disk

 Centralized system, with one buffer pool for all system disks

 So pages in buffer overlay those pages on disk to define the
database state

 A simple scheme is needed

 A protocol that is too complex is difficult to implement

 Performance is also an important issue

Handling the Buffer Pool

 Force every write to disk?

 Poor response time - disk is slow!

 But provides durability

 Want to be lazy about writes to disk, but not too lazy!

 Note that one transaction can use more pages than can fit

in the buffer manager, so DB needs to support spillage to

disk

 So need to be able to write out a page changed by an

uncommitted transaction

Stealing a page (see text, pg. 541)

 The same capability of writing a page with uncommitted data is
used for “stealing” a page

 Scenario:
 Transaction T1 has a lot of pages in buffer, with uncommitted changes

 Transaction T2 needs a buffer page, steals it from T1 by having T1’s
page written to disk, then using that buffer slot

 With stealing going on, how can we ensure atomicity?

 One controlling mechanism is page pinning

 Only an unpinned buffer page can be stolen…

 Another mechanism involves the log’s LSNs (log sequence
numbers), covered soon

Lifetime of a page: page pinning in action

 Read by T1 and pinned (see pg. 319), S lock on row

 Read by T2 and pinned/share, S lock on row

 Read access finished by T1, unpinned by T1, still pinned by

T2

 Read access finished by T2, unpinned, now fully unpinned

 Note: no logging for reads

 Write access requested by T3, page is pinned exclusive, T3

gets X lock on row C, changes row, logs action, gets LSN

back, puts in page header, page unpinned

 Page now has 2 rows with S locks, one with X lock, is

unpinned, so could be stolen

Steal and Force

 STEAL

 Not easy to enforce atomicity when steal is possible

 To steal frame F: current (unpinned) page P is written to disk;

some transaction holds lock on row A of P

 What if holder of the lock on A aborts?

 Note the disk page holding A has the new value now, needs undoing.

 Must remember the old value of A at or before steal time (to support

UNDOing the write to row A)

 NO FORCE (lazy page writes)

 What if system crashes before a modified page is written to disk?

 Write as little as possible in a convenient place to support

REDOing modifications

The Log

 The following actions are recorded in the log:

 Ti writes an object: the old value and the new value.

 Log record must go to disk before the changed page!

 Ti commits/aborts: a log record indicating this action.

 Log records are chained together by Xact id, so it’s easy to

undo a specific Xact.

 Log is often duplexed and archived on stable storage.

 All log related activities (and in fact, all CC related activities

such as lock/unlock, dealing with deadlocks etc.) are handled

transparently by the DBMS.

Logging

 Essential function for recovery

 Record REDO and UNDO information, for every update

 Example: T1 updates A from 10 to 20

 Undo: know how to change 20 back to 10 if find 20 in disk page and

know T1 aborted

 Redo: know how to change 10 to 20 if see 10 in the disk page and

know T1 committed.

 Writes to log must be sequential, stored on a separate disk

 Minimal information (summary of changes) written to log, since

writing the log can be a performance problem

Logging

 What is in the Log

 Ordered list of REDO/UNDO actions

 Update log record contains:

<prevLSN, transID, pageID, offset, length, old data, new data>

 Old data is called the before image

 New data called the after image

 The prevLSN provides the LSN of the transaction’s previous log

record, so it’s easy to scan backwards through log records as

needed in UNDO processing

Write-Ahead Logging (WAL)

 The Write-Ahead Logging Protocol:

1. Must force the log record for an update before the

corresponding data page gets to disk

2. Must write all log records for transaction before commit

returns

 Property 1 guarantees Atomicity

 Property 2 guarantees Durability

 We focus on the ARIES algorithm

 Algorithms for Recovery and Isolation Exploiting Semantics

How Logging is Done

 Each log record has a unique Log Sequence Number (LSN)

 LSNs always increasing

 Works similar to “record locator”

 Each data page contains a pageLSN

 The LSN of the most recent log record
for an update to that page

 System keeps track of flushedLSN

 The largest LSN flushed so far

 WAL: Before a page is written,

flush its log record such that

 pageLSN flushedLSN

pageLSN

Data
Page

Log records
flushed to disk

“Log tail”
in RAM

flushedLSN

Log Records

Possible log entry types:

 Update

 Commit

 Abort

 End (signifies end of commit

or abort)

 Compensation Log

Records (CLRs)

 for UNDO actions

prevLSN

transID

entryType

length

pageID

offset

before-image

after-image

LogRecord fields:

update
records
only

Other Log-Related State

 Transaction Table:

 One entry per active transaction

 Contains transID, status (running/commited/aborted), and lastLSN (most recent LSN for
transaction)

 A dirty page is one whose disk and buffer images differ
 So a dirty page becomes clean at page write, if it stays in buffer

 Once clean, can be deleted from dirty page table

 And is clean if it gets read back into buffer, even with uncommitted data in it

 Dirty Page Table:

 One entry per dirty page in buffer pool

 Contains recLSN - the LSN of the log record which first caused the page to be dirty (spec’s
what part of log relates to redos for this page)

 Earliest recLSN – important milestone for recovery (spec’s what part of log relates to redos
for whole system)

 Both the above are stored in RAM, hence volatile!

Normal Execution of Transactions

 Series of reads & writes, followed by commit or abort

 We will assume that write is atomic on disk

 In practice, additional details to deal with non-atomic writes

 Strict 2PL

 STEAL, NO-FORCE buffer management, with Write-Ahead

Logging

Transaction Commit

 Write commit record to log for transaction T

 All log records up to lastLSN of T are flushed.

 Guarantees that flushedLSN  lastLSN

 Note that log flushes are sequential, synchronous writes to

disk

 Does NOT mean that page writes are propagated to data disk!

 Commit() returns.

 Write end record to log

Example: A Committing transaction
R1(A, 50) W1(A,20) C1

 R1(A): Transaction started, entered into Transaction table, page read into
buffer, pinned, data used, unpinned (no logging)

 W1(A): page found in buffer, pinned, log record written:
 prevLSN = null, transID = 1, entryType = update, etc.

 Before-image = 50, after-image = 20. Suppose LSN = 222

 Page now dirty, pageLSN=222, entered into dirty page table, unpinned

 TxTable entry now has lastLSN = 222

 C1: Log record (LSN223) for commit has prevLSN=222, Log is pushed so
LSN 223 record is on disk. Now transaction is committed.
 Transaction status in TxTable is changed to committed

 Log record for End (LSN224) is written, has prevLSN=223.

 Note: dirty page can still hang around in buffer pool: its content defines the
database state for that page

 Sometime later, dirty page written to disk, page considered clean, dropped
from dirty page table.

Checkpointing

 Periodically, the DBMS creates a checkpoint

 minimize time taken to recover in the event of a system crash

 Checkpoint logging:

 begin_checkpoint record: Indicates when checkpoint began

 end_checkpoint record: Contains current transaction table and dirty
page table as of begin_checkpoint time

 So the earliest recLSN is known at recovery time, and the set of live
transactions, very useful for recovery

 Other transactions continue to run; tables accurate only as of the time
of the begin_checkpoint record – fuzzy checkpoint

 No attempt to force dirty pages to disk!

 LSN of begin_checkpoint written in special master record on stable
storage

Simple Transaction Abort

 First, consider an explicit abort of a transaction

 No crash involved, have good transaction table

 Need to “play back” the log in reverse order, UNDOing

updates.

 Get lastLSN of transaction from transaction table

 Find that log record, undo one page change

 Can follow chain of log records backward via the prevLSN field

 Before starting UNDO, write an Abort log record

 For recovering from crash during UNDO!

 For each update UNDO, write a CLR record in the log…

Example: An aborting transaction
R1(A, 50) W1(A,20) A1

 R1(A): Transaction started, entered into Transaction table, page read into
buffer, pinned, data used, unpinned (no logging)

 W1(A): page found in buffer, pinned, log record written:
 prevLSN = null, transID = 1, entryType = update, etc.

 Before-image = 50, after-image = 20. Suppose LSN = 222

 Page now dirty, pageLSN=222, entered into dirty page table, unpinned

 TxTable entry now has lastLSN = 222

 A1: Log record (LSN223) for abort has prevLSN=222. Then undo actions
are started.
 Undo W1(A): use lastLSN of TxTable to locate log entry for write

 Write CLR record to log, with LSN 224,

 Find page in buffer, pin, apply before image (50), so A=50 again, unpin

 Transaction status in TxTable is changed to aborted

 Log record for End (LSN224) is written, has prevLSN=224.

 Note: dirty page can still hang around in buffer pool: its content defines the
database state for that page

 Before restoring old value of a page, write a CLR:

 CLR has one extra field: undonextLSN

 Points to the next LSN to undo (i.e. the prevLSN of the record we’re
currently undoing).

 The undonextLSN value is used only if this CLR ends up as the last one in
the log for this transaction: specs which update log record to start/resume
UNDOing (possibly resuming UNDO work interrupted by a crash)

 CLRs never Undone (but they might be Redone when repeating
history). For recovery UNDO, they just point where to start working.

 At end of transaction UNDO, write an “end” log record.

Simple Transaction Abort ARIES Overview

DB

Data pages
Each with a

pageLSN

Transaction Table
lastLSN

status

Dirty Page Table
recLSN

flushedLSN

RAM

prevLSN

transID

type

length

pageID

offset

before-image

after-image

LogRecords

LOG

Crash Recovery: Big Picture

Start from a checkpoint (found in
master record)

Three phases:

ANALYSIS: Find which
transactions committed or failed
since checkpoint

REDO all actions (repeat history)

UNDO effects of failed
transactions

Oldest log
rec. of Xact
active at crash

Smallest
recLSN in
dirty page
table after
Analysis

Last chkpt

CRASH

A R U

