
Data Warehousing and
Decision Support

CS634
Class 22, Apr 25, 2016

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke, Chapter 25

Introduction

 Increasingly, organizations are analyzing current and
historical data to identify useful patterns and support
business strategies.

Emphasis is on complex, interactive, exploratory analysis of
very large datasets created by integrating data from across
all parts of an enterprise; data is fairly static.
• Contrast such Data Warehousing and On-Line Analytic Processing

(OLAP) with traditional On-line Transaction Processing (OLTP):
mostly long queries, instead of the short update Xacts of OLTP.

• These are both using “structured data” that can be fairly easily
loaded into a database

Structured vs. Unstructured Data

• So far, we have been working with structured data

• Structured data:
• Entities with attributes, each fitting a SQL data type

• Relationships

• Each row of data is precious

• Loads into relational tables, long-term storage

• Can be huge

• Unstructured data, realm of “big data”
• Often doesn’t fit into E/R model, too sloppy

• Each piece of data is not precious—it’s statistical

• Sometimes just processed and thrown away

• No permanent specialized repository, maybe saved in files

• Can be really huge

Bigness of Data

Big data warehouses, all on Teradata systems

See http://gigaom.com/2013/03/27/why-apple-ebay-and-
walmart-have-some-of-the-biggest-data-warehouses-youve-
ever-seen
• Biggest DW: Walmart, passed 1TB in 1992, 2.8 PB (petabytes) = 2800 TB in

2008, 30 PB in 2014, growing…

• eBay: 9 PB DW in 2013, also has 40 PB of big data

• Apple: multiple-PB DW

• Big data:
• Usually over 50TB, can’t fit on one machine

• Is judged by “velocity” as well as size

• Google: processed 24 PB of data per day in 2009, invented Map-Reduce,
published 2004

http://gigaom.com/2013/03/27/why-apple-ebay-and-walmart-have-some-of-the-biggest-data-warehouses-youve-ever-seen

Teradata

• Teradata provides a relational database with ANSI compliant SQL,
targeted to data warehouses

• Proprietary, expensive ($millions)

• Uses a shared-nothing architecture on many independent nodes

• Partitioning by rows or (more recently) columns

• Scales up well: add node, add network bandwidth for it

Three Complementary Trends

Data Warehousing: Consolidate data from many sources in one
large repository (relational database).
• Loading, periodic synchronization of replicas.

• Semantic integration, Data cleaning of data on way in

• Both simple and complex SQL queries and views.

OLAP:
• Complex SQL queries (in effect, but not composed by users).

• Queries based on spreadsheet-style operations and “multidimensional”
view of data.

• Interactive and “online” queries.

Data Mining: Exploratory search for interesting trends and
anomalies.

Data Warehousing

 Integrated data spanning long time
periods, often augmented with
summary information.

Several gigabytes to terabytes
common, now petabytes too.

 Interactive response times expected
for complex queries; ad-hoc updates
uncommon.

Read-mostly data

EXTERNAL DATA SOURCES

EXTRACT

TRANSFORM

LOAD

REFRESH

DATA

WAREHOUSE
Metadata

Repository

SUPPORTS

OLAP
DATA

MINING

Warehousing Issues

Semantic Integration: When getting data from multiple
sources, must eliminate mismatches, e.g., different
currencies, schemas.

Heterogeneous Sources: Must access data from a variety of
source formats and repositories.
• Replication capabilities can be exploited here.

Load, Refresh, Purge: Must load data, periodically refresh it,
and purge too-old data.

Metadata Management: Must keep track of source (lineage)
loading time, and other information for all data in the
warehouse.

OLAP: Multidimensional data model

• Example: sales data

• Dimensions: Product, Location, Time

• A measure is a numeric value like sales we want to understand in
terms of the dimensions

• Example measure: dollar sales value “sales”

• Example data point (one row of fact/cube table):
• Sales = 25 for pid=1, timeid=1, locid=1 is the sum of sales for that day, in that location, for

that product

• Pid=1: details in Product table

• Locid = 1: details in Location table

•Note aggregation here: sum of sales is most detailed
data

Multidimensional Data Model

 Collection of numeric measures, which depend on a set of
dimensions.
 E.g., measure sales, dimensions Product (key: pid), Location

(locid), and Time (timeid).

 Full table, pg. 851

8 10 10

30 20 50

25 8 15

1 2 3

timeid

p
id

11

1
2

1

3

11 1 1 25

11 2 1 8

11 3 1 15

12 1 1 30

12 2 1 20

12 3 1 50

13 1 1 8

13 2 1 10

13 3 1 10

11 1 2 35

p
id

ti
m

ei
d

lo
ci

d

sa
le

s

locid

Slice locid=1

is shown:

SalesCube(pid, timeid, locid, sales)

Granularity of Data

• Example of last slide uses time at granularity of days

• Individual transactions (sales at cashier) have been added together to
make one row in this table

• Note: “measures” can always be aggregated

• Current hardware can handle more data

• Typical data warehouses hold the original transaction data

• So such a fact table has more columns, for example

• dateid, timeofday, prodid, storeid, txnid, clerkid, sales, …

Data Warehouse vs. Data for OLAP

• Current DW fact table is huge, with individual transactions, large
number of dimensions

• Can only use a subset of this for OLAP, because of explosion of cells

• Take DW fact table, roll up to days (say), drop less important columns,
get much smaller data for OLAP

• Load data into OLAP, another tool.

• Table on pg. 851 is a cube table, not a DW fact table

• Can think of OLAP as a cache of most important aggregates of DW
tables

MOLAP vs ROLAP vs HOLAP

Multidimensional data can be stored physically in a (disk-resident,
persistent) array; called MOLAP systems. Alternatively, can store as a
relation; called ROLAP systems;

 hybrid of these = HOLAP, current systems

 The main relation, which relates dimensions to a measure, is called the
fact table. Each dimension can have additional attributes and an
associated dimension table.
• E.g., Products(pid, pname, category,price)

• Fact tables are much larger than dimensional tables.

Dimension Hierarchies: OLAP, DW

 For each dimension, the set of values can be organized in a
hierarchy:

PRODUCT TIME LOCATION

category week month state

pname date city

year

quarter country

Schema underlying OLAP, used in DW

 Fact/cube table in BCNF; dimension tables not normalized.
• Dimension tables are small; updates/inserts/deletes are rare. So, anomalies

less important than good query performance.

 This kind of schema is very common in DW and OLAP, and is called a
star schema; computing the join of all these relations is called a star
join.
Note: in OLAP, this is not what the user sees, it’s hidden underneath
 In DW, this is the basic setup, but usually with more dimensions
Here only one measure, sales, but can have several

pricecategorypnamepid countrystatecitylocid

saleslocidtimeidpid

holiday_flagweekdatetimeid month quarter year

(Fact table)SALES

TIMES

PRODUCTS LOCATIONS

OLAP (and DW) Queries

 Influenced by SQL and by spreadsheets.

A common operation is to aggregate a measure over one or
more dimensions.
• Find total sales.

• Find total sales for each city, or for each state.

• Find top five products ranked by total sales.

Roll-up: Aggregating at different levels of a dimension
hierarchy.
• E.g., Given total sales by city, we can roll-up to get sales by state.

OLAP Queries: MDX (Multidimensional
Expressions)

• Originally a Microsoft SQL Server project, but now supported widely
in the OLAP industry: Oracle, SAS, SAP, Teradata on server side, as
well as Microsoft. Allows client programs to specify OLAP datasets.

• Example from Wikipedia

SELECT

{ [Measures].[Store Sales] } ON COLUMNS,

{ [Date].[2002], [Date].[2003] } ON ROWS

FROM Sales

WHERE ([Store].[USA].[CA])

• The SELECT clause sets the query axes as the Store Sales member of the
Measures dimension, and the 2002 and 2003 members of the Date
dimension.

• The FROM clause indicates that the data source is the Sales cube.
• The WHERE clause defines the "slicer axis" as the California member of

the Store dimension.

https://en.wikipedia.org/wiki/MultiDimensional_eXpressions

OLAP Queries

 Drill-down: The inverse of roll-up: go from sum to details that were
added up before
• E.g., Given total sales by state, can drill-down to get total sales by county.

• Drill down again, see total sales by city

• E.g., Can also drill-down on different dimension to get total sales by product for
each state.

OLAP Queries: cross-tabs

With relational DBs, we are used to tables with column names across the
top, rows of data.

With OLAP, a spreadsheet-like representation is common,

Called a cross-tabulation:

One dimension horizontally

 Another vertically
63 81 144

38 107 145

75 35 110

WI CA Total

1995

1996

1997

176 223 339Total

OLAP Queries: Pivoting
 Example cross-tabulation:

 Pivoting: switching dimensions on axes, or choosing what dimensions to show
on axes

 Switching dimensions means pivoting around a point in the upper-left-hand
corner
 End up with “1995 1996 1997 Total” across top,
 “WI CA Total” down the side

63 81 144

38 107 145

75 35 110

WI CA Total

1995

1996

1997

176 223 339Total

Oracle 11 supports cross-tabs display

select * from (

select times_purchased, state_code

from customers t

) pivot (

count(state_code)

for state_code in ('NY','CT','NJ','FL','MO')

) order by times_purchased

Here is the output:

TIMES_PURCHASED 'NY' 'CT‘ 'NJ' 'FL‘ 'MO'

--------------- ---------- ---------- ---------- ---------- --

0 16601 90 0 0 0

1 33048 165 0 0 0

2 33151 179 0 0 0

3 32978 173 0 0 0

4 33109 173 0 1 0

... and so on ...
(We have Oracle 10, unfortunately)

SQL Queries for cross-tab entries

The cross-tabulation values can be computed
using a collection of SQL queries:

SELECT SUM(S.sales)

FROM Sales S, Times T, Locations L

WHERE S.timeid=T.timeid AND S.timeid=L.timeid

GROUP BY T.year, L.state

SELECT SUM(S.sales)

FROM Sales S, Times T

WHERE S.timeid=T.timeid

GROUP BY T.year

SELECT SUM(S.sales)

FROM Sales S, Location L

WHERE S.timeid=L.timeid

GROUP BY L.state

63 81 144

38 107 145

75 35 110

WI CA Total

1995

1996

1997

176 223 339Total

The CUBE Operator
Generalizing the previous example, if there are k dimensions, we

have 2^k possible SQL GROUP BY queries that can be generated
through pivoting on a subset of dimensions.

 CUBE Query, pg. 857

• Equivalent to rolling up Sales on all eight subsets of the set {pid, locid,
timeid}; each roll-up corresponds to an SQL query of the form:

SELECT SUM(S.sales)

FROM Sales S
GROUP BY grouping-list

SELECT T.year, L.state, SUM(S.sales)

FROM Sales S, Times T, Locations L

WHERE S.timeid = T.timeid and S.locid = L.locid
GROUP BY CUBE (T.year, L.state)

Oracle 10 supports CUBE queries
select t.year, s.store_state, sum(dollar_sales)

from salesfact f, times t, store s

where f.time_key = t.time_key and s.store_key = f.store_key

group by cube(t.year, s.store_state);

YEAR STORE_STATE SUM(DOLLAR_SALES)

-------- -------------------- -----------------

781403.59

AZ 35684

CA 77420.82

CO 38335.26 (some rows deleted)

TX 40886.54

WA 39540.16

1994 396355.76

1994 AZ 17903.04

1994 CA 38966.54

1994 CO 17870.33

1994 DC 20901.18 … from dbs2 output

DW data  OLAP

• The CUBE query can do the roll-ups on DW data needed for OLAP

Excel is the champ at OLAP queries

• Next time will do Excel pivot table demo

• Based on video by Minder Chen of UCI (Cal state U/Channel Islands)

• https://www.youtube.com/watch?v=eGhjklYyv6Y

• Setup:

• His MS Access database with star schema for sales

• Create view of fact joined with desired dimension data (a star join)

• Point Excel at this big view, ask it to create pivot table

• Pivot table: drill down, roll up, pivot, …

https://ciapps.csuci.edu/FacultyBiographies/minder.chen
https://www.youtube.com/watch?v=eGhjklYyv6Y

Excel can use Oracle data too

• The database from Chen’s demo is now in dbs2’s Oracle

• We could point Excel to an Oracle view of joined tables.

• How does that work?

• Use ODBC (Open Database Connectivity), older than JDBC, but
roughly same idea
• Provides client API for accessing multiple databases

• Each database provides a ODBC driver

• Unfortunately, it’s not easy to set up ODBC on a Windows system even
though Microsoft invented it

• Another way: MDX driver to allow Excel to use live Oracle OLAP data

• http://download.oracle.com/otndocs/products/warehouse/olap/videos/exce
l_olap_demo/Excel_Demo_for_Web.html

http://download.oracle.com/otndocs/products/warehouse/olap/videos/excel_olap_demo/Excel_Demo_for_Web.html

Star queries

• Oracle definition: a query that joins a large (fact) table to a number of small
(dimension) tables, with provided WHERE predicates on the dimension
tables to reduce the result set to a very small percentage of the fact table

• The select list still has sum(sales), etc., as desired.

SELECT store.sales_district,
time.fiscal_period, SUM(sales.dollar_sales)
FROM sales, store, time

WHERE sales.store_key = store.store_key AND
sales.time_key = time.time_key AND
store.sales_district IN ('San Francisco',
'Los Angeles') AND time.fiscal_period IN ('3Q95',
'4Q95', '1Q96')

GROUP BY
store.sales_district,time.fiscal_period;

Star queries

• Oracle: A better way to write the query would be:
(i.e., give the QP a hint on how to do it)

SELECT ... FROM sales
WHERE store_key IN
(SELECT store_key FROM store

WHERE sales_district IN ('WEST', 'SOUTHWEST'))
AND time_key IN

(SELECT time_key FROM time
WHERE quarter IN ('3Q96', '4Q96', '1Q97'))

AND product_key IN
(SELECT product_key FROM product

WHERE department = 'GROCERY')
GROUP BY …;

• Oracle will rewrite the query this way if you add the STAR_TRANSFORMATION hint to your SQL, or
the DBA has set STAR_TRANSFORMATION_ENABLED

http://www.orafaq.com/tuningguide/star query.html

Excel can do Star queries

• Recall GROUP BY queries for individual crosstab entries

• A Star query is of this form, plus WHERE clause predicates on
dimension tables such as
• store.sales_district IN ('WEST', 'SOUTHWEST')

• time.quarter IN ('3Q96', '4Q96', '1Q97')

• Excel allows “filters” on data that correspond to these predicates of
the WHERE clause

Indexes related to data warehousing

New indexing techniques: Bitmap indexes, Join indexes, array
representations, compression, precomputation of aggregations, etc.

 E.g., Bitmap index:

sex custid name sex rating ratingBit-vector:

1 bit for each

possible value.

Many queries can

be answered using

bit-vector ops!

M
F

Bitmap Indexes
• A bitmap index uses one bit vector (BV) for each distinct keyval

• The number of bits = #rows

• Example of last slide, 4 rows, 2 columns with bitmap indexes
• Sex = ‘M’: BV = 1101
• Sex = ‘F’: BV = 0010
• Rating = 3, BV = 1000
• Rating = 4, BV = 0001
• Rating = 5, BV = 0110

• Underlying idea: it’s not hard to convert between a table’s row numbers
and the row RIDs

• RIDs have file#, page#, row# within page, where file# is fixed for one
heap table, and page# ranges from 0 up to some limit.

• For the kind of read-mostly data that bitmap indexes are used, the pages
are full, so the RIDs (page#, row# in a certain file) look like (0,0), (0,1),
(0,2), (1,0), (1,1), … easily converted to row indexes 0, 1, 2, 3, 4, 5, … and
back again

Bitmap index for sex column

Bitmap index for rating column

Bitmap Indexes

• Implementation: B+-tree of key values, bitmap for each key

• Size = #values*#rows/8 if not compressed

• Bitmaps can be compressed, done by Oracle and others

• Main restriction: slow row insert/delete, so NG for OLTP
• But great for data warehouses:

• Data warehouses are updated only periodically, traditionally

• Low cardinality (#values in column) a clear fit
• Example: rating, with 10 values

• But in fact, cardinality can be fairly high with compression

• Oracle example: bitmap index on unique column!

http://www.oracle.com/technetwork/articles/sharma-indexes-093638.html

Bitmap Indexes

• Oracle: create bitmap index sexx on custs(sex);

• Bitmap indexes can be used with AND and OR predicates

• Example

Select name from sailors s

where s.rating = 10 and sex = ‘M’ or sex = ‘F’

BV1 BV2 BV3

ResultBV = BV1 & BV2 | BV3

• Each bit on in ResultBV shows a row that satisfies the predicate

• Loop through on-bits, finding rows and output name

Oracle Bitmap index plan

• EXPLAIN PLAN FOR SELECT * FROM t WHERE c1 = 2 AND c2 <> 6 OR c3 BETWEEN 10 AND
20;

•

• EXPLAIN PLAN FOR

• SELECT * FROM t WHERE c1 = 2 AND c2 <> 6 OR c3 BETWEEN 10 AND 20;

• SELECT STATEMENT

• TABLE ACCESS T BY INDEX ROWID

• BITMAP CONVERSION TO ROWID -- get ROWIDs for each on-bit

• BITMAP OR --top level OR

• BITMAP MINUS --to remove null values of c2

• BITMAP MINUS -- to calc c1 = 2 AND c2 <> 6

• BITMAP INDEX C1_IND SINGLE VALUE --c1= 2 BV

• BITMAP INDEX C2_IND SINGLE VALUE --c2 = 6 BV

• BITMAP INDEX C2_IND SINGLE VALUE --c2 = null BV (no not null on col)

• BITMAP MERGE --merge BV’s over C3 range

• BITMAP INDEX C3_IND RANGE SCAN

Bitmaps for star schemas, to be continued

• The dimension tables are not large, maybe 100 rows

• Thus the FK columns in the fact table have only 100 values

• Bitmap indexes can pinpoint rows once determined.

• Bitmaps can be AND’d and OR’d

• Example: time.fiscal_period IN ('3Q95',

'4Q95') matches say 180 days in time table, so 180 FK values
in fact’s time_key column

• OR together the 180 bitmaps, get a bitmap locating all fact rows that
satisfy this predicate

