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Introduction

 Increasingly, organizations are analyzing current and 
historical data to identify useful patterns and support 
business strategies.

Emphasis is on complex, interactive, exploratory analysis of 
very large datasets created by integrating data from across 
all parts of an enterprise; data is fairly static.
• Contrast such Data Warehousing and  On-Line Analytic Processing 

(OLAP) with traditional On-line Transaction Processing (OLTP):
mostly long queries, instead of  the short update Xacts of OLTP.  

• These are both using “structured data” that can be fairly easily 
loaded into a database



Structured vs. Unstructured Data

• So far, we have been working with structured data

• Structured data:
• Entities with attributes, each fitting a SQL data type

• Relationships

• Each row of data is precious

• Loads into relational tables, long-term storage

• Can be huge

• Unstructured data, realm of “big data”
• Often doesn’t fit into E/R model, too sloppy

• Each piece of data is not precious—it’s statistical

• Sometimes just processed and thrown away

• No permanent specialized repository, maybe saved in files

• Can be really huge



Bigness of Data

Big data warehouses, all on Teradata systems

See http://gigaom.com/2013/03/27/why-apple-ebay-and-
walmart-have-some-of-the-biggest-data-warehouses-youve-
ever-seen
• Biggest DW: Walmart, passed 1TB in 1992, 2.8 PB (petabytes) = 2800 TB in 

2008, 30 PB in 2014, growing…

• eBay: 9 PB DW in 2013, also has 40 PB of big data

• Apple: multiple-PB DW

• Big data:
• Usually over 50TB, can’t fit on one machine

• Is judged by “velocity” as well as size

• Google: processed 24 PB of data per day in 2009, invented Map-Reduce, 
published 2004

http://gigaom.com/2013/03/27/why-apple-ebay-and-walmart-have-some-of-the-biggest-data-warehouses-youve-ever-seen


Teradata

• Teradata provides a relational database with ANSI compliant SQL, 
targeted to data warehouses

• Proprietary, expensive ($millions)

• Uses a shared-nothing architecture on many independent nodes

• Partitioning by rows or (more recently) columns

• Scales up well: add node, add network bandwidth for it



Three Complementary Trends

Data Warehousing: Consolidate data from many sources in one 
large repository (relational database).
• Loading, periodic synchronization of replicas.

• Semantic integration, Data cleaning of data on way in

• Both simple and complex SQL queries and views.

OLAP:
• Complex SQL queries (in effect, but not composed by users). 

• Queries based on spreadsheet-style operations and “multidimensional”
view of data.

• Interactive and “online” queries.

Data Mining:  Exploratory search for interesting trends and 
anomalies. 



Data Warehousing

 Integrated data spanning long time 
periods, often augmented with 
summary information. 

Several gigabytes to terabytes 
common, now petabytes too.

 Interactive response times expected 
for complex queries; ad-hoc updates 
uncommon.

Read-mostly data
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Warehousing Issues

Semantic Integration: When getting data from multiple 
sources, must eliminate mismatches, e.g., different 
currencies, schemas.

Heterogeneous Sources: Must access data from a variety of 
source formats and repositories.
• Replication capabilities can be exploited here.

Load, Refresh, Purge: Must load data, periodically refresh it, 
and purge too-old data.

Metadata Management: Must keep track of source (lineage) 
loading time, and other information for all data in the 
warehouse.



OLAP: Multidimensional data model

• Example: sales data

• Dimensions: Product, Location, Time

• A measure is a numeric value like sales we want to understand in 
terms of the dimensions

• Example measure: dollar sales value “sales”

• Example data point (one row of fact/cube table):
• Sales = 25 for pid=1, timeid=1, locid=1 is the sum of sales for that day, in that location, for 

that product

• Pid=1: details in Product table

• Locid = 1: details in Location table

•Note aggregation here: sum of sales is most detailed 
data



Multidimensional Data Model

 Collection of numeric measures, which depend on a set of 
dimensions.
 E.g., measure sales, dimensions Product (key: pid), Location

(locid),  and Time (timeid).

 Full table, pg. 851
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Granularity of Data

• Example of last slide uses time at granularity of days

• Individual transactions (sales at cashier) have been added together to 
make one row in this table

• Note: “measures” can always be aggregated

• Current hardware can handle more data

• Typical data warehouses hold the original transaction data

• So such a fact table has more columns, for example

• dateid, timeofday, prodid, storeid, txnid, clerkid, sales, …



Data Warehouse vs. Data for OLAP

• Current DW fact table is huge, with individual transactions, large 
number of dimensions

• Can only use a subset of this for OLAP, because of explosion of cells

• Take DW fact table, roll up to days (say), drop less important columns, 
get much smaller data for OLAP

• Load data into OLAP, another tool.

• Table on pg. 851 is a cube table, not a DW fact table

• Can think of OLAP as a cache of most important aggregates of DW 
tables



MOLAP vs ROLAP vs HOLAP

Multidimensional data can be stored physically in a (disk-resident, 
persistent) array; called MOLAP systems.  Alternatively, can store as a 
relation; called ROLAP systems; 

 hybrid of these = HOLAP, current systems

 The main relation, which relates dimensions to a measure, is called the 
fact table.  Each dimension can have additional attributes and an 
associated dimension table.
• E.g., Products(pid, pname, category,price )

• Fact tables are much larger than dimensional tables.



Dimension Hierarchies: OLAP, DW

 For each dimension, the set of values can be organized in a 
hierarchy:

PRODUCT TIME LOCATION

category           week          month                  state

pname                       date                                city

year

quarter                          country



Schema underlying OLAP, used in DW

 Fact/cube table in BCNF; dimension tables not normalized.
• Dimension tables are small; updates/inserts/deletes are rare. So, anomalies 

less important than good query performance.

 This kind of schema is very common in DW and OLAP, and is called a 
star schema; computing the join of all these relations is called a star 
join.
Note: in OLAP, this is not what the user sees, it’s hidden underneath
 In DW, this is the basic setup, but usually with more dimensions
Here only one measure, sales, but can have several

pricecategorypnamepid countrystatecitylocid

saleslocidtimeidpid

holiday_flagweekdatetimeid month quarter year

(Fact table)SALES

TIMES

PRODUCTS LOCATIONS



OLAP (and DW) Queries

 Influenced by SQL and by spreadsheets.

A common operation is to aggregate a measure over one or 
more dimensions.
• Find total sales.

• Find total sales for each city, or for each state.

• Find top five products ranked by total sales.

Roll-up: Aggregating at different levels of  a dimension 
hierarchy.  
• E.g., Given total sales by city, we can roll-up to get sales by state.



OLAP Queries: MDX (Multidimensional 
Expressions)

• Originally a Microsoft SQL Server project, but now supported widely 
in the OLAP industry: Oracle, SAS, SAP, Teradata on server side, as 
well as Microsoft. Allows client programs to specify OLAP datasets.

• Example from Wikipedia

SELECT

{ [Measures].[Store Sales] } ON COLUMNS,

{ [Date].[2002], [Date].[2003] } ON ROWS

FROM Sales

WHERE ( [Store].[USA].[CA] )

• The SELECT clause sets the query axes as the Store Sales member of the 
Measures dimension, and the 2002 and 2003 members of the Date 
dimension.

• The FROM clause indicates that the data source is the Sales cube.
• The WHERE clause defines the "slicer axis" as the California member of 

the Store dimension.

https://en.wikipedia.org/wiki/MultiDimensional_eXpressions


OLAP Queries

 Drill-down: The inverse of roll-up: go from sum to details that were 
added up before
• E.g., Given total sales by state, can drill-down to get total sales by county.

• Drill down again, see total sales by city

• E.g., Can also drill-down on different dimension to get total sales by product for 
each state.



OLAP Queries: cross-tabs

With relational DBs, we are used to tables with column names across the 
top, rows of data.

With OLAP, a spreadsheet-like representation is common,

Called a cross-tabulation:

One dimension horizontally

 Another vertically
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OLAP Queries: Pivoting
 Example cross-tabulation:

 Pivoting: switching dimensions on axes, or choosing what dimensions to show 
on axes

 Switching dimensions means pivoting around a point in the upper-left-hand 
corner
 End up with “1995 1996 1997 Total” across top,
 “WI CA Total” down the side

63    81   144

38   107  145

75    35   110

WI    CA     Total

1995

1996

1997

176  223  339Total



Oracle 11 supports cross-tabs display

select * from (

select times_purchased, state_code

from customers t 

) pivot ( 

count(state_code) 

for state_code in ('NY','CT','NJ','FL','MO') 

) order by times_purchased

Here is the output:

TIMES_PURCHASED 'NY'  'CT‘  'NJ'   'FL‘    'MO' 

--------------- ---------- ---------- ---------- ---------- --

0 16601 90 0 0 0 

1 33048 165 0 0 0 

2 33151 179 0 0 0 

3 32978 173 0 0 0 

4 33109 173 0 1 0 

... and so on ... 
(We have Oracle 10, unfortunately)



SQL Queries for cross-tab entries

The cross-tabulation values can be computed 
using a collection of  SQL queries:

SELECT SUM(S.sales)

FROM  Sales S, Times T, Locations L

WHERE  S.timeid=T.timeid AND S.timeid=L.timeid

GROUP BY T.year, L.state

SELECT SUM(S.sales)

FROM  Sales S, Times T

WHERE  S.timeid=T.timeid

GROUP BY T.year

SELECT SUM(S.sales)

FROM  Sales S, Location L

WHERE  S.timeid=L.timeid

GROUP BY L.state

63    81   144

38   107  145

75    35   110

WI    CA     Total

1995

1996

1997

176  223  339Total



The CUBE Operator
Generalizing the previous example, if there are k dimensions, we 

have 2^k possible SQL GROUP BY queries that can be generated 
through pivoting on a subset of dimensions.

 CUBE Query, pg. 857

• Equivalent to rolling up Sales on all eight subsets of the set {pid, locid, 
timeid}; each roll-up corresponds to an SQL query of the form:

SELECT SUM(S.sales)

FROM  Sales S
GROUP BY grouping-list

SELECT T.year, L.state, SUM(S.sales)

FROM  Sales S, Times T, Locations L

WHERE S.timeid = T.timeid and S.locid = L.locid
GROUP BY CUBE (T.year, L.state)



Oracle 10 supports CUBE queries
select t.year, s.store_state, sum(dollar_sales)

from salesfact f, times t, store s

where f.time_key = t.time_key and s.store_key = f.store_key

group by cube(t.year, s.store_state);

YEAR STORE_STATE          SUM(DOLLAR_SALES)

-------- -------------------- -----------------

781403.59

AZ                    35684

CA                    77420.82

CO                    38335.26  (some rows deleted)

TX                    40886.54

WA                    39540.16

1994                          396355.76

1994 AZ                  17903.04

1994     CA                  38966.54

1994     CO                  17870.33

1994     DC                  20901.18   … from dbs2 output



DW data  OLAP

• The CUBE query can do the roll-ups on DW data needed for OLAP



Excel is the champ at OLAP queries

• Next time will do Excel pivot table demo

• Based on video by Minder Chen of UCI (Cal state U/Channel Islands)

• https://www.youtube.com/watch?v=eGhjklYyv6Y

• Setup:

• His MS Access database with star schema for sales

• Create view of fact joined with desired dimension data (a star join)

• Point Excel at this big view, ask it to create pivot table

• Pivot table: drill down, roll up, pivot, …

https://ciapps.csuci.edu/FacultyBiographies/minder.chen
https://www.youtube.com/watch?v=eGhjklYyv6Y


Excel can use Oracle data too

• The database from Chen’s demo is now in dbs2’s Oracle

• We could point Excel to an Oracle view of joined tables.

• How does that work?

• Use ODBC (Open Database Connectivity), older than JDBC, but 
roughly same idea
• Provides client API for accessing multiple databases

• Each database provides a ODBC driver 

• Unfortunately, it’s not easy to set up ODBC on a Windows system even 
though Microsoft invented it

• Another way: MDX driver to allow Excel to use live Oracle OLAP data

• http://download.oracle.com/otndocs/products/warehouse/olap/videos/exce
l_olap_demo/Excel_Demo_for_Web.html

http://download.oracle.com/otndocs/products/warehouse/olap/videos/excel_olap_demo/Excel_Demo_for_Web.html


Star queries

• Oracle definition: a query that joins a large (fact) table to a number of small 
(dimension) tables, with provided WHERE predicates on the dimension 
tables to reduce the result set to a very small percentage of the fact table

• The select list still has sum(sales), etc., as desired.

SELECT store.sales_district, 
time.fiscal_period, SUM(sales.dollar_sales) 
FROM sales, store, time

WHERE sales.store_key = store.store_key AND 
sales.time_key = time.time_key AND 
store.sales_district IN ('San Francisco', 
'Los Angeles') AND time.fiscal_period IN ('3Q95', 
'4Q95', '1Q96')

GROUP BY 
store.sales_district,time.fiscal_period;



Star queries

• Oracle: A better way to write the query would be:
(i.e., give the QP a hint on how to do it)

SELECT ... FROM sales 
WHERE store_key IN 
( SELECT store_key FROM store 

WHERE sales_district IN ('WEST', 'SOUTHWEST')) 
AND time_key IN 

( SELECT time_key FROM time 
WHERE quarter IN ('3Q96', '4Q96', '1Q97')) 

AND product_key IN
( SELECT product_key FROM product  

WHERE department = 'GROCERY')
GROUP BY …;

• Oracle will rewrite the query this way if you add the STAR_TRANSFORMATION hint to your SQL, or 
the DBA has set STAR_TRANSFORMATION_ENABLED 

http://www.orafaq.com/tuningguide/star query.html


Excel can do Star queries

• Recall GROUP BY queries for individual crosstab entries

• A Star query is of this form, plus WHERE clause predicates on 
dimension tables such as
• store.sales_district IN ('WEST', 'SOUTHWEST')

• time.quarter IN ('3Q96', '4Q96', '1Q97')

• Excel allows “filters” on data that correspond to these predicates of 
the WHERE clause 



Indexes related to data warehousing

New indexing techniques:  Bitmap indexes, Join indexes, array 
representations, compression, precomputation of aggregations, etc.

 E.g., Bitmap index:

sex       custid name sex rating      ratingBit-vector:

1 bit for each

possible value.

Many queries can

be answered using

bit-vector ops!

M
F



Bitmap Indexes
• A bitmap index uses one bit vector (BV) for each distinct keyval

• The number of bits = #rows

• Example of last slide, 4 rows, 2 columns with bitmap indexes
• Sex = ‘M’: BV = 1101
• Sex = ‘F’: BV = 0010
• Rating = 3, BV = 1000
• Rating = 4, BV = 0001
• Rating = 5, BV = 0110

• Underlying idea: it’s not hard to convert between a table’s row numbers 
and the row RIDs

• RIDs have file#, page#, row# within page, where file# is fixed for one 
heap table, and page# ranges from 0 up to some limit. 

• For the kind of read-mostly data that bitmap indexes are used, the pages 
are full, so the RIDs (page#, row# in a certain file) look like (0,0), (0,1), 
(0,2), (1,0), (1,1), … easily converted to row indexes 0, 1, 2, 3, 4, 5, … and 
back again

Bitmap index for sex column

Bitmap index for rating column



Bitmap Indexes

• Implementation: B+-tree of key values, bitmap for each key

• Size = #values*#rows/8 if not compressed

• Bitmaps can be compressed, done by Oracle and others

• Main restriction: slow row insert/delete, so NG for OLTP
• But great for data warehouses:

• Data warehouses are updated only periodically, traditionally

• Low cardinality (#values in column) a clear fit
• Example: rating, with 10 values

• But in fact, cardinality can be fairly high with compression

• Oracle example: bitmap index on unique column!

http://www.oracle.com/technetwork/articles/sharma-indexes-093638.html


Bitmap Indexes

• Oracle: create bitmap index sexx on custs(sex); 

• Bitmap indexes can be used with AND and OR predicates

• Example

Select name from sailors s

where s.rating = 10 and sex = ‘M’ or sex = ‘F’

BV1                  BV2            BV3

ResultBV = BV1 & BV2 | BV3

• Each bit on in ResultBV shows a row that satisfies the predicate

• Loop through on-bits, finding rows and output name



Oracle Bitmap index plan

• EXPLAIN PLAN FOR SELECT * FROM t WHERE c1 = 2 AND c2 <> 6 OR c3 BETWEEN 10 AND 
20;

•

• EXPLAIN PLAN FOR

• SELECT * FROM t  WHERE c1 = 2 AND c2 <> 6 OR c3 BETWEEN 10 AND 20;

• SELECT STATEMENT

• TABLE ACCESS T BY INDEX ROWID

• BITMAP CONVERSION TO ROWID  -- get ROWIDs for each on-bit

• BITMAP OR --top level OR

• BITMAP MINUS --to remove null values of c2

• BITMAP MINUS -- to calc c1 = 2 AND c2 <> 6

• BITMAP INDEX C1_IND SINGLE VALUE --c1= 2 BV

• BITMAP INDEX C2_IND SINGLE VALUE  --c2 = 6 BV

• BITMAP INDEX C2_IND SINGLE VALUE  --c2 = null BV (no not null on col)

• BITMAP MERGE --merge BV’s over C3 range 

• BITMAP INDEX C3_IND RANGE SCAN



Bitmaps for star schemas, to be continued

• The dimension tables are not large, maybe 100 rows

• Thus the FK columns in the fact table have only 100 values

• Bitmap indexes can pinpoint rows once determined.

• Bitmaps can be AND’d and OR’d

• Example: time.fiscal_period IN ('3Q95', 

'4Q95') matches say 180 days in time table, so 180 FK values 
in fact’s time_key column

• OR together the 180 bitmaps, get a bitmap locating all fact rows that 
satisfy this predicate


