Data Warehousing and
Decision Support

Class 22, Apr 25, 2016

Slides based on “Database Management Systems™ 3¢ ed, Ramakrishnan and Gehrke, Chapter 25

Structured vs. Unstructured Data

« So far, we have been working with structured data
* Structured data:
« Entities with attributes, each fitting a SQL data type
* Relationships
* Each row of data is precious
* Loads into relational tables, long-term storage
* Can be huge
* Unstructured data, realm of “big data”
« Often doesn’t fit into E/R model, too sloppy
* Each piece of data is not precious—it’s statistical
* Sometimes just processed and thrown away
* No permanent specialized repository, maybe saved in files
* Can be really huge

Teradata

« Teradata provides a relational database with ANSI compliant SQL,
targeted to data warehouses

« Proprietary, expensive (Smillions)

* Uses a shared-nothing architecture on many independent nodes
« Partitioning by rows or (more recently) columns

 Scales up well: add node, add network bandwidth for it

Introduction

= Increasingly, organizations are analyzing current and
historical data to identify useful patterns and support
business strategies.

=Emphasis is on complex, interactive, exploratory analysis of
very large datasets created by integrating data from across
all parts of an enterprise; data is fairly static.
« Contrast such Data Warehousing and On-Line Analytic Processing
(OLAP) with traditional On-line Transaction Processing (OLTP):
mostly long queries, instead of the short update Xacts of OLTP.

* These are both using “structured data” that can be fairly easily
loaded into a database

Bigness of Data

Big data warehouses, all on Teradata systems

See http://gigaom.com/2013/03/27/why-apple-ebay-and-
walmart-have-some-of-the-biggest-data-warehouses-youve-
ever-seen

+ Biggest DW: Walmart, passed 1TB in 1992, 2.8 PB (petabytes) = 2800 TB in
2008, 30 PB in 2014, growing...
* eBay: 9 PB DW in 2013, also has 40 PB of big data
* Apple: multiple-PB DW
* Big data:
* Usually over 50TB, can’t fit on one machine
 Is judged by “velocity” as well as size

* Google: processed 24 PB of data per day in 2009, invented Map-Reduce,
published 2004

Three Complementary Trends

=Data Warehousing: Consolidate data from many sources in one
large repository (relational database).
* Loading, periodic synchronization of replicas.
« Semantic integration, Data cleaning of data on way in
* Both simple and complex SQL queries and views.
=OLAP:
» Complex SQL queries (in effect, but not composed by users).

* Queries based on spreadsheet-style operations and “multidimensional”
view of data.

* Interactive and “online” queries.
= Data Mining: Exploratory search for interesting trends and
anomalies.

http://gigaom.com/2013/03/27/why-apple-ebay-and-walmart-have-some-of-the-biggest-data-warehouses-youve-ever-seen

= Integrated data spanning long time

= Several gigabytes to terabytes

EXTERNAL DATA SOURCES

Data Warehousing D D

EXTRACT
TRANSFORM
LOAD
REFRESH

periods, often augmented with
summary information.

common, now petabytes too. G
= Interactive response times expected

for complex queries; ad-hoc updates Metadata

uncommon. Repository

= Read-mostly data
UPPOR

DATA
MINING _y

OLAP

OLAP: Multidimensional data model

« Example: sales data
* Dimensions: Product, Location, Time

* A measure is a numeric value like sales we want to understand in
terms of the dimensions

« Example measure: dollar sales value “sales”
* Example data point (one row of fact/cube table):

+ Sales = 25 for pid=1, timeid=1, locid=1 is the sum of sales for that day, in that location, for
that product

* Pid=1: details in Product table

* Locid = 1: details in Location table

* Note aggregation here: sum of sales is most detailed
data

Granularity of Data

« Example of last slide uses time at granularity of days

« Individual transactions (sales at cashier) have been added together to
make one row in this table

* Note: “measures” can always be aggregated

* Current hardware can handle more data

 Typical data warehouses hold the original transaction data
* So such a fact table has more columns, for example

« dateid, timeofday, prodid, storeid, txnid, clerkid, sales, ...

DATA
WAREHOUSE

Warehousing Issues

=Semantic Integration: When getting data from multiple
sources, must eliminate mismatches, e.g., different
currencies, schemas.

= Heterogeneous Sources: Must access data from a variety of
source formats and repositories.

* Replication capabilities can be exploited here.

=Load, Refresh, Purge: Must load data, periodically refresh it,
and purge too-old data.

= Metadata Management: Must keep track of source (lineage)
loading time, and other information for all data in the

warehouse.
25 .
Multidimensional Data Model T Eg2
SalesCube(pid, timeid, locid, sales) 1?_- f 1_ 2w5
= Collection of ic measures, which depend t of
mnumencmm ures, which depend on a set o 1112118
=Eg, sales, dif i roduct (key: pid), Location
i e o dmensions o b Lecsion 117311 (15
= Full table, pg. 851 1211 |1 130
1212 |1 |20
12 13 |1 |50
Slice locid=1 ~ S| 8 | 10| 10 1311 (1 [8
is shown: 291302050 132 |1 |10
o125 8 15 “ocid 133 |1 |10
1 2 3 1111 |2 |35

timeid

Data Warehouse vs. Data for OLAP

* Current DW fact table is huge, with individual transactions, large
number of dimensions

* Can only use a subset of this for OLAP, because of explosion of cells

* Take DW fact table, roll up to days (say), drop less important columns,
get much smaller data for OLAP

* Load data into OLAP, another tool.
* Table on pg. 851 is a cube table, not a DW fact table

* Can think of OLAP as a cache of most important aggregates of DW
tables

MOLAP vs ROLAP vs HOLAP

= Multidimensional data can be stored physically in a (disk-resident,
persistent) array; called systems. Alternatively, can store as a
relation; called systems;

= hybrid of these = HOLAP, current systems

= The main relation, which relates dimensions to a measure, is called the

. Each dimension can have additional attributes and an
associated
* Eg.,
* Fact tables are much larger than dimensional tables.

Schema underlying OLAP, used in DW

TIMES

|timeid ‘date ‘ week‘ month ‘ quarter ‘ year\ holiday_flag |

[pid Jtimeid [locid [sales] saLes (Fact table)

PRODUCTS LOCATIONS

|pid ‘pname ‘category ‘price | |Iocid ‘ city ‘slate ‘ country |

= Fact/cube table in BCNF; dimension tables not normalized.
* Dimension tables are small; updates/inserts/deletes are rare. So, anomalies
less important than good query performance.

= This kind of schema is very common in DW and OLAP, and is called a
; computing the join of all these relations is called a

= Note: in OLAP, this is not what the user sees, it’s hidden underneath
= In DW, this is the basic setup, but usually with more dimensions
= Here only one measure, sales, but can have several

OLAP Queries: MDX (Multidimensional
Expressions)

* Originally a Microsoft SQL Server project, but now supported widely
in the OLAP industry: Oracle, SAS, SAP, Teradata on server side, as
well as Microsoft. Allows client programs to specify OLAP datasets.

« Example from Wikipedia
SELECT
{ [Measures].[Store Sales] } ON COLUMNS,
{ [Date].[2002], [Date].[2003] } ON ROWS
FROM Sales
WHERE ([Store].[USA].[CA])
The SELECT clause sets the query axes as the Store Sales member of the
Measures dimension, and the 2002 and 2003 members of the Date
dimension.
The FROM clause indicates that the data source is the Sales cube.
The WHERE clause defines the "slicer axis" as the California member of
the Store dimension.

Dimension Hierarchies: OLAP, DW

= For each dimension, the set of values can be organized in a
hierarchy:

PRODUCT TIME LOCATION
year
quarter country
P
category week month state
~
pname date city

OLAP (and DW) Queries

= Influenced by SQL and by spreadsheets.
= A common operation is to a measure over one or
more dimensions.

* Find total sales.

* Find total sales for each city, or for each state.

* Find top five products ranked by total sales.

Aggregating at different levels of a dimension

hierarchy.
« E.g., Given total sales by city, we can roll-up to get sales by state.

OLAP Queries

The inverse of roll-up: go from sum to details that were
added up before
+ E.g., Given total sales by state, can drill-down to get total sales by county.
« Drill down again, see total sales by city

+ E.g., Can also drill-down on different dimension to get total sales by product for

each state.

https://en.wikipedia.org/wiki/MultiDimensional_eXpressions

OLAP Queries: cross-tabs

With relational DBs, we are used to tables with column names across the
top, rows of data.

With OLAP, a spreadsheet-like representation is common,
Called a cross-tabulation:

= One dimension horizontally WI CA | Total
= Another vertically

1995 | 63 | 81 |144
1996 | 38 |107|145

1997 | 75 | 35| 110
Total | 176|223 339

Oracle 11 supports cross-tabs display

select * from (

select times_purchased, state code

from customers t
) pivot (

count (state_code)

for state_code in ('NY','CT','NJ','FL','MO')
) order by times_purchased

Here is the output

TIMES_PURCHASED 'NY' 'CT' 'NJ' 'FL' "Mo'
4 16601 90 0 0 0
1 33048 165 0 0 0
2 33151 179 0 0 0
3 32978 173 0 0 0
4 33109 173 0 1 0

... and so on ...
(We have Oracle 10, unfortunately)

The CUBE Operator

= Generalizing the previous example, if there are k dimensions, we
have 2”k possible SQL GROUP BY queries that can be generated
through pivoting on a subset of dimensions.

= CUBE Query, pg. 857

SELECT T.year, L.state, SUM(S.sales)

FROM Sales S, Times T, Locations L

WHERE S.timeid = T.timeid and S.locid = L.locid
GROUP BY CUBE (T.year, L.state)

« Equivalent to rolling up Sales on all eight subsets of the set {pid, locid,
timeid}; each roll-up corresponds to an SQL query of the form:

SELECT SUM(S.sales)

FROM Sales S
GROUP BY grouping-list

SQL Queries for cross-tab entries 1995 | 63 | 81 | 144
996

The cross-tabulation values can be computed 38 |107{145

using a collection of SQL queries: 1997 75 | 35 [110

SELECT SUM(S.sales) Total | 176|223 339

OLAP Queries: Pivoting Wi cA | Total

= Example cross-tabulation: 1995 63 | 81 1144

1996 | 38 |107|145
1997 | 75 | 35 |110
Total | 176|223 339

= Pivoting: switching dimensions on axes, or choosing what dimensions to show
on axes

= Switching dimensions means pivoting around a point in the upper-left-hand
corner
= End up with “1995 1996 1997 Total” across top,
= “WI CA Total” down the side

WI CA | Total

FROM Sales S, Times T, Locations L
WHERE S.timeid=T.timeid AND S.timeid=L.timeid
GROUPBY T.year, L.state

SELECT SUM(S.sales) SELECT SUM(S.sales)
FROM Sales S, Times T FROM Sales S, Location L
WHERE S.timeid=T.timeid WHERE S.timeid=L.timeid
GROUPBY T.year GROUPBY L.state

Oracle 10 supports CUBE queries
select t.year, s.store_state, sum(dollar_sales)
from salesfact f, times t, store s
where f.time key = t.time key and s.store_key = f.store_key
group by cube (t.year, s.store_state);

YEAR STORE_STATE SUM (DOLLAR_SALES)
781403.59
az 35684
ca 77420.82
co 38335.26 (some rows deleted)
X 40886.54
WA 39540.16
1994 396355.76
1994 Az 17903.04
1994 ca 38966.54
1994 co 17870.33
1994 nc 20901.18 from dbs2 output

DW data = OLAP

* The CUBE query can do the roll-ups on DW data needed for OLAP

Excel can use Oracle data too

« The database from Chen’s demo is now in dbs2’s Oracle
* We could point Excel to an Oracle view of joined tables.
* How does that work?

« Use ODBC (Open Database Connectivity), older than JDBC, but
roughly same idea

* Provides client API for accessing multiple databases

* Each database provides a ODBC driver

* Unfortunately, it’s not easy to set up ODBC on a Windows system even
though Microsoft invented it

* Another way: MDX driver to allow Excel to use live Oracle OLAP data

* http://download.oracle.com/otndocs/products/warehouse/olap/videos/exce
|_olap_demo/Excel Demo_for Web.html

Star queries

* Oracle: A better way to write the query would be:
(i.e., give the QP a hint on how to do it)
SELECT ... FROM sales
WHERE store_key IN
(SELECT store_key FROM store
WHERE sales_district IN ('WEST', 'SOUTHWEST'))
AND time_key IN
(SELECT time_key FROM time
WHERE quarter IN ('3Q96', '4Q96', '1Q97'))
AND product_key IN
(SELECT product_key FROM product
WHERE department = 'GROCERY')
GROUPBY ..;

+ Oracle will rewrite the query this way if you add the STAR_TRANSFORMATION hint to your SQL, or
the DBA has set STAR_TRANSFORMATION_ENABLED

Excel is the champ at OLAP queries

* Next time will do Excel pivot table demo

« Based on video by Minder Chen of UCI (Cal state U/Channel Islands)
* https://www.youtube.com/watch?v=eGhijklYyv6Y

* Setup:

* His MS Access database with star schema for sales

« Create view of fact joined with desired dimension data (a star join)
* Point Excel at this big view, ask it to create pivot table

* Pivot table: drill down, roll up, pivot, ...

Star queries

« Oracle definition: a query that joins a large (fact) table to a number of small
(dimension) tables, with provided WHERE predicates on the dimension
tables to reduce the result set to a very small percentage of the fact table

* The select list still has sum(sales), etc., as desired.

SELECT store.sales_district,
time.fiscal _period, SUM(sales.dollar_sales)
FROM sales, store, time

WHERE sales.store_key = store.store_key AND
sales.time_key = time.time_key AND
store.sales_district IN ('San Francisco',
'Los Angeles') AND time.fiscal period IN ('3Q95',
'4Q95', '1Q9%6"'")

GROUP BY
store.sales_district,time.fiscal period;

Excel can do Star queries

* Recall GROUP BY queries for individual crosstab entries
« A Star query is of this form, plus WHERE clause predicates on
dimension tables such as
* store.sales_district IN ('WEST', 'SOUTHWEST')
* time.quarter IN ('3Q96', '4Q96', '1Q97')
« Excel allows “filters” on data that correspond to these predicates of
the WHERE clause

https://ciapps.csuci.edu/FacultyBiographies/minder.chen
https://www.youtube.com/watch?v=eGhjklYyv6Y
http://download.oracle.com/otndocs/products/warehouse/olap/videos/excel_olap_demo/Excel_Demo_for_Web.html
http://www.orafaq.com/tuningguide/star query.html

Indexes related to data warehousing

= New indexing techniques: Bitmap indexes, Join indexes, array
representations, compression, precomputation of aggregations, etc.

= E.g., Bitmap index:

custid name sex rating

rating

1 bit for each” ™™
possible value.

112 |Joe M

Many queries can
be answered using

115 |Ram

00100
00001

bit-vector ops!

M
119 |Sue |F
112 |Woo |M

£ |

00001
00010

Bitmap Indexes

« Implementation: B+-tree of key values, bitmap for each key
* Size = #values*#rows/8 if not compressed
* Bitmaps can be compressed, done by Oracle and others

* Main restriction: slow row insert/delete, so NG for OLTP
* But great for data warehouses:
« Data warehouses are updated only periodically, traditionally

 Low cardinality (#values in column) a clear fit
* Example: rating, with 10 values

* But in fact, cardinality can be fairly high with compression
* Oracle example: bitmap index on unique column!

Oracle Bitmap index plan

. %XPLA\N PLAN FOR SELECT * FROM t WHERE c1 = 2 AND c2 <> 6 OR c¢3 BETWEEN 10 AND

* EXPLAIN PLAN FOR

* SELECT * FROM t WHERE c1 =2 AND c2 <> 6 OR c3 BETWEEN 10 AND 20;
* SELECT STATEMENT

* TABLE ACCESS T BY INDEX ROWID

* BITMAP CONVERSION TO ROWID -- get ROWIDs for each on-bit

. BITMAPOR --top level OR

. BITMAP MINUS --to remove null values of c2

. BITMAP MINUS --to calcc1=2 AND c2<>6

. BITMAP INDEX C1_IND SINGLE VALUE --c1=2 BV

. BITMAP INDEX C2_IND SINGLE VALUE --c2 =6 BV

. BITMAP INDEX C2_IND SINGLE VALUE --c2 = null BV (no not null on col)
. BITMAP MERGE ~ --merge BV’s over C3 range

. BITMAP INDEX C3_IND RANGE SCAN

Bitmap Indexes

« A bitmap index uses one bit vector (BV) for each distinct keyval
* The number of bits = #rows

« Example of last slide, 4 rows, 2 columns with bitmap indexes
* Sex=‘M": BV =1101
* Sex=F: BV = 0010 } Bitmap index for sex column
* Rating = 3, BV = 1000 ',
* Rating = 4, BV = 0001 ‘ .))
+ Rating = 5, BV = 0110 - Bitmap index for rating column
* Underlying idea: it’s not hard/to convert between a table’s row numbers
and the row RIDs

* RIDs have file#, page#, row# within page, where file# is fixed for one
heap table, and paget ranges from 0 up to some limit.

* For the kind of read-mostly data that bitmap indexes are used, the pages
are full, so the RIDs (page#, row# in a certain file) look like (0,0), (0,1),
(0,2), (1,0), (1,1), ... easily converted to row indexes 0, 1, 2, 3,4, 5, ... and
back again

Bitmap Indexes

* Oracle: create bitmap index sexx on custs(sex);
* Bitmap indexes can be used with AND and OR predicates
* Example

Select name from sailors s

where s.rating = 10 and sex = ‘M’ or sex = ‘F’

BV1 BV2 BV3

ResultBV = BV1 & BV2 | BV3
« Each bit on in ResultBV shows a row that satisfies the predicate
* Loop through on-bits, finding rows and output name

Bitmaps for star schemas, to be continued

* The dimension tables are not large, maybe 100 rows

* Thus the FK columns in the fact table have only 100 values

« Bitmap indexes can pinpoint rows once determined.

* Bitmaps can be AND’d and OR'd

«Example: time.fiscal period IN ('3Q95',
'4Q95") matches say 180 days in time table, so 180 FK values
in fact’s time_key column

* OR together the 180 bitmaps, get a bitmap locating all fact rows that
satisfy this predicate

http://www.oracle.com/technetwork/articles/sharma-indexes-093638.html

