
Data Warehousing and

Decision Support, part 2

CS634
Class 23, Apr 27, 2016

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke, Chapter 25

Multidimensional Data Model

 Collection of numeric measures, which

depend on a set of dimensions.

 E.g., measure sales, dimensions Product (key:

pid), Location (locid), and Time (timeid).

 Full table, pg. 851

8 10 10

30 20 50

25 8 15

1 2 3

timeid

p
id

11

1
2

1

3

11 1 1 25

11 2 1 8

11 3 1 15

12 1 1 30

12 2 1 20

12 3 1 50

13 1 1 8

13 2 1 10

13 3 1 10

11 1 2 35

p
id

ti
m

ei
d

lo
ci

d

sa
le

s

locid

Slice locid=1

is shown:

SalesCube(pid, timeid, locid, sales)

Dimension Hierarchies: OLAP, DW

 For each dimension, the set of values can be organized

in a hierarchy:

PRODUCT TIME LOCATION

category week month state

pname date city

year

quarter country

OLAP Queries: Pivoting

 Example cross-tabulation:

 Pivoting: switching dimensions on axes, or choosing what
dimensions to show on axes

 Easily done with Excel Pivot table by dragging and dropping
attributes into the right panes: Row Labels, Column Labels

 Measures go in “Values” pane

63 81 144

38 107 145

75 35 110

WI CA Total

1995

1996

1997

176 223 339Total

Excel is the champ at OLAP queries

 Excel pivot table demo

 Based on video by Minder Chen of UCI (Cal state

U/Channel Islands)

 https://www.youtube.com/watch?v=eGhjklYyv6Y

 Setup:

 His MS Access database with star schema for sales

 Create view of fact joined with desired dimension data (a

star join)

 Point Excel at this big view, ask it to create pivot table

 Pivot table: drill down, roll up, pivot, …

https://ciapps.csuci.edu/FacultyBiographies/minder.chen
https://www.youtube.com/watch?v=eGhjklYyv6Y

Star queries

 Oracle definition: a query that joins a large (fact) table to a
number of small (dimension) tables, with provided WHERE
predicates on the dimension tables to reduce the result set to
a very small percentage of the fact table

 The select list still has sum(sales), etc., as desired.
SELECT store.sales_district,
time.fiscal_period, SUM(sales.dollar_sales)
FROM sales, store, time

WHERE sales.store_key = store.store_key AND
sales.time_key = time.time_key AND
store.sales_district IN ('San Francisco', 'Los
Angeles') AND time.fiscal_period IN ('3Q95',
'4Q95', '1Q96')

GROUP BY
store.sales_district,time.fiscal_period;

Excel can do Star queries

 Recall GROUP BY queries for individual crosstab entries

 A Star query is of this form, plus WHERE clause

predicates on dimension tables such as

 store.sales_district IN ('WEST', 'SOUTHWEST')

 time.quarter IN ('3Q96', '4Q96', '1Q97')

 Excel allows “filters” on data that correspond to these

predicates of the WHERE clause

 Just drag and drop a dimension attribute into Report

Filter pane, and a new list-box shows up to allow

selection of value(s)of that attribute

Excel Demo

 Note that it starts with a cube-type table in DB:

 One row: sum of all sales for one store for one product

related to one promotion

 Dimensions here: Time, Product, Store, Promotion

 In DB, created a view that joined fact table with Time,

Product, and Store (but not Promotion)

 In Excel, made a pivot table using this view data

 Cube in use didn’t use promotion, so

 One cell of cube: sum of all sales for one store for one product

Full data warehouse would have the individual sales data

Star schemas arise in many fields

 The dimensions: the facts of the matter

 What: product

 Where: store

 When: time

 How/why: promotion

 This can be generalized to other subjects: ecology

 What: temperature

 Where: location and height

 When: time

 How/why: quality of data

 Which: working group

Star schema from ecology

Star Schema from Medicine

What’s this?

Indexing for DW, cont: Join Indexes
 Consider the join of Sales, Products, Times, and Locations,

 A join index can be constructed to speed up such joins. The

index contains [s,p,t,l] if there are tuples (with sid) s in Sales, p

in Products, t in Times and l in Locations that satisfy the join

conditions.

 Can do one dimension column at a time, put <f_rid, c1> in c1’s

join index, where f_rid is the fact table RID and c1 the

dimension-table value we’re interested in.

 It’s as if c1 is an additional column of the fact table, with a

normal index <c1, f_rid> to allow finding rows with certain c1.

 Related topic: materialized views, cover later.

 Bitmap indexes are a good match here…

Indexes related to data warehousing

 Example Bitmap index:

sex custid name sex rating rating

Bit-vector:

1 bit for each

possible value.

Many queries can

be answered using

bit-vector ops!

MF

Bitmap Indexes

 A bitmap index uses one bit vector (BV) for each distinct keyval

 The number of bits = #rows

 Example of last slide, 4 rows, 2 columns with bitmap indexes
 Sex = ‘M’: BV = 1101

 Sex = ‘F’: BV = 0010

 Rating = 3, BV = 1000

 Rating = 4, BV = 0001

 Rating = 5, BV = 0110

 Underlying idea: it’s not hard to convert between a table’s row numbers
and the row RIDs, for a heap table. (Not so easy for Alt. 1 clustered)

 RIDs have file#, page#, row# within page, where file# is fixed for one heap
table, and page# ranges from 0 up to some limit.

 For the kind of read-mostly data that bitmap indexes are used, the pages
are full, so the RIDs (page#, row# in a certain file) look like (0,0), (0,1),
(0,2), (1,0), (1,1), … easily converted to row indexes 0, 1, 2, 3, 4, 5, … and
back again

Bitmap index for sex column

Bitmap index for rating column

Oracle Bitmap join index
CREATE BITMAP INDEX sales_cust_gender_bjix ON

sales(customers.cust_gender) FROM sales, customers

WHERE sales.cust_id = customers.cust_id LOCAL;

The following query shows a case using this bitmap join index:

SELECT sales.time_id, customers.cust_gender, sales.amount

FROM sales, customers

WHERE sales.cust_id = customers.cust_id;

This Join index has two bitmaps, themselves in the leaves of a little B+-tree:

M: 10110001111... one bit for each row of sales table

F: 01001110000...

Here the join is replaced by f_rid to row# to gender lookup using the join index.
TIME_ID C AMOUNT

--------- - ----------

01-JAN-98 M 2291

01-JAN-98 F 114

01-JAN-98 M 553

...

Oracle bitmap join indexes for star q’s
SELECT store.sales_district, time.fiscal_period,

SUM(sales.dollar_sales) FROM sales, store, time

WHERE sales.store_key = store.store_key AND sales.time_key

= time.time_key AND store.sales_district IN ('San

Francisco', 'Los Angeles') AND time.fiscal_period IN

('3Q95', '4Q95', '1Q96')

GROUP BY store.sales_district,time.fiscal_period;

 Here, could use a bitmap join index on

store.sales_district and another on time.fiscal_period.

 Then Oracle could OR the SF and LA bitmaps, and OR

the three fiscal_period bitmaps, then AND the two bit

vectors together to obtain a foundset on the fact table.

Bitmaps for star schemas

 Bitmaps can be AND’d and OR’d

 So bitmaps on dimension tables are helpful

 But often not so crucial since dimension tables are often

small

 Real problem is dealing with the huge the fact table: that’s

where the bitmap join indexes come to the rescue.

 Or, alternatively, bitmap indexes on the FK columns.

Bitmaps for star schemas

 The dimension tables are not large, maybe 100 rows

 Thus the FK columns in the fact table have only 100

values

 Bitmap indexes can pinpoint rows once determined.

 Bitmaps can be AND’d and OR’d

 Example: calendar_quarter_desc IN('1999-01','1999-

02')

 matches say 180 days in time table, so 180 FK values in

fact’s time_key column

 OR together the 180 bitmaps, get a bit-vector locating all

fact rows that satisfy this predicate

Bitmaps for Star Schemas

 OK, so get one bit-vector for matching times, BVT

 Similarly, get another bit-vector for matching stores, BVS

 Another for matching products, BVP

Result = BVT&BVS&BVP

 If result has 100 bits on or less, it’s a “Needle-in-the-haystack”

query, answer in <= 100 i/os, about 1 sec.

 If result has 10,000 bits on, time <= 100 sec, still tolerable

 If result has more, this simple approach isn’t so great

 Note we can quickly determine the number of results, so

count(*) doable even when select … is too costly.

Bitmap steps of star query plan
 | 9 | BITMAP CONVERSION TO ROWIDS|

 | 10 | BITMAP AND |

 | 11 | BITMAP MERGE |

 | 12 | BITMAP KEY ITERATION |

 | 13 | BUFFER SORT |

 |* 14 | TABLE ACCESS FULL | CHANNELS

 |* 15 | BITMAP INDEX RANGE SCAN| SALES_CHANNEL_BIX

 | 16 | BITMAP MERGE |

 | 17 | BITMAP KEY ITERATION |

 | 18 | BUFFER SORT |

 |* 19 | TABLE ACCESS FULL | TIMES

 |* 20 | BITMAP INDEX RANGE SCAN| SALES_TIME_BIX

 | 21 | BITMAP MERGE |

 | 22 | BITMAP KEY ITERATION |

 | 23 | BUFFER SORT |

 |* 24 | TABLE ACCESS FULL | CUSTOMERS

 |* 25 | BITMAP INDEX RANGE SCAN| SALES_CUST_BIX

 | 26 | TABLE ACCESS BY USER ROWID | SALES

http://docs.oracle.com/cd/E16655_01/server.121/e15858/tgsql_transform.htm

Organizing huge fact tables

 If the query retrieves 1000 or even 10,000 rows from the fact

table, it’s still pretty fast (10,000 random i/os = 100 seconds,

faster on RAID)

 The problem is that retrieving 100,000 random rows in a huge

fact table (itself billions of rows) means 100,000 page i/os

(1000 seconds) unless we do something about the fact table

organization

 Traditional solution for scattered i/o problem: clustered table.

 But what to cluster on—time? Product? Store?

 Practical simple answer: time, so can insert smoothly and

extend the table, delete old stuff in a range

 But we can do better…

Well, how does Teradata do it?

By multi-dimensional partitioning (toy example):
 CREATE TABLE Sales (storeid INTEGER NOT NULL,

productid INTEGER NOT NULL, salesdate DATE FORMAT

'yyyy-mm-dd' NOT NULL, totalrevenue DECIMAL(13,2),

totalsold INTEGER, note VARCHAR(256)) UNIQUE

PRIMARY INDEX (storeid, productid, salesdate)

PARTITION BY

(RANGE_N(salesdate BETWEEN DATE '2002-01-01' AND

DATE '2008-12-31' EACH INTERVAL '1' YEAR),

RANGE_N(storeid BETWEEN 1 AND 300 EACH 100),

RANGE_N(productid BETWEEN 1 AND 400 EACH 100));

 This table is first partitioned by year based on salesdate.

 Next, within each year the data will be partitioned by storeid in groups
of 100.

 Finally, within each year/storeid group, the data will be partitioned by
productid in groups of 100.

Teradata System

Partitioning puts a

set of cube cells

on each node

Star query pulls

data from a subset

of cells scattered

across nodes

Partitioning: physical organization

 Not covered by SQL standard

 So we have to look at each product for details

 But similar basic capabilities

 Oracle says start thinking about partitioning if your table

is over 2GB in size.

 Another way of saying it: start thinking about partitioning

if your table and indexes can’t fit in the database buffer

pool. (Don’t forget to size up the buffer pool to, say, ½

memory when you install the database!)

 Burleson says: Anyone with un-partitioned databases

over 500 gigabytes is courting disaster!

http://www.dba-oracle.com/oracle_tips_partitioning.htm

Partitioning Example

 Consider a warehouse with 10TB of data, made up of 2
TB per year of sales data, for 5 years.

 End of year: has grown to 12 TB, need to clean out oldest
2TB, or put it in archive area.

 Or do this every month.

 Either way, massive delete. Could delete rows on many
pages, lowering #rows/page, thus query performance.
Will take a long time for a big table.

 With partitioning, we can just drop a partition, create a
new one for the new year/month. All the surviving
extents still have the same rows.

 So most warehouses are partitioned by year or month.

Partitioning

 The following works in Oracle and mysql:
create table sales (year int, yearday int,

product varchar(10),sales decimal(10,2))

partition by range (year)

(partition p1 values less than (2010),

partition p2 values less than (2011),

partition p3 values less than (2012),

partition p4 values less than (2013);

 Here the sales table is created with 4 partitions. Partition

p1 will contain rows of year 2009 and earlier. Partition p2

will contain rows of year 2010, and so on..

Partitioning by time

 Considering example table partitioned by year

 So if we’re interested in data from a certain year, the disks
do one seek, then read, read, read…

 Much more efficient than if all the years are mixed up on disk.
Partitioning is doing a kind of clustering.

 We could partition by month instead of by year and get finer-
grained clustering

 To add a partition to sales table give the following
command.

alter table sales

add partition p6 values less than (2014);

 Similarly can drop a partition of old data

Oracle Partitioning

 In Oracle, each partition has its own extents, like an

ordinary table or index does. So each extent will have

data all from one year.

 We read-mostly data, we should make sure the extents

are at least 1MB, so say 16MB in size. In Oracle we could

create the one tablespace with a default storage clause

early in our setup

 Could be across two RAID sets, each with 1MB stripes

CREATE TABLESPACE dw_tspace

DATAFILE 'fname1' SIZE 3000G,'fname2' SIZE 3000G

DEFAULT STORAGE (INITIAL 16M NEXT 16M);

Types of Partitioning

 In Oracle and mysql you can partition a table by

 Range Partitioning (example earlier)

 Hash Partitioning

 List Partitioning (specify list of key values for each partition)

 Composite Partitioning (uses subpartitions of range or list
partitions)

 Much more to this than we can cover quickly, but plenty
of documentation online

 Idea from earlier: put cells of cube/fact table together in
various different places. Need last item in above list.

 But Oracle docs/tools shy away from 3-level cases (they
do work, because I’ve done it)

Cube-related partitioning in Oracle
create table sales (year int, dayofyear int, product varchar(10),

sales decimal(10,2))

PARTITION BY RANGE (year)

SUBPARTITION BY HASH(product) SUBPARTITIONS 8

(partition p1 values less than (2008),

partition p2 values less than (2009),

partition p3 values less than (2010),

partition p4 values less than (2011),

partition p5 values less than (2012);

));

 Here have 40 partitions

 Subpartitions are also made of extents (in Oracle), so now in one extent
we have a certain subset of products in a certain year.

 With partitions and subpartitions, we are getting a kind of multi-
dimensional clustering, by two dimensions.

DB2’s Multi-dimensional Clustering (MDC)

Example 3-dim

clustering,

following cube

dimensions.

Note this is not

partitioning, but

can be used with

partitioning

Characteristics of a mainstream DB2 data

warehouse fact table, from DB2 docs

 A typical warehouse fact table, might use the following

design: Create data partitions on the Month column.

 Define a data partition for each period you roll-out, for

example, 1 month, 3 months.

 Create MDC dimensions on Day and on 1 to 4 additional

dimensions. Typical dimensions are: product line and

region.

Example DB2 partition/MDC table

CREATE TABLE orders (YearAndMonth INT,

Province CHAR(2), sales DECIMAL(12,2))

PARTITION BY RANGE (YearAndMonth)

(STARTING 9901 ENDING 9904 EVERY 2)

ORGANIZE BY (YearAndMonth, Province);

 Partition by time for easy roll-out

 Use MDC for fast cube-like queries

 All data for yearandmonth = ‘9901’ and province=‘ON’

(Ontario) in one disk area

 Note this example has no dimension tables

 Could use prodid/1000, etc. as MDC computed column—but

does the QP optimize queries properly for this?

Partition Pruning
 The QP needs to be smart about partitions/MDC cells

 From Oracle docs, the idea:“Do not scan partitions where there
can be no matching values”.

 Example: partitions of table t1 based on region_code:
PARTITION BY RANGE(region_code)

(PARTITION p0 VALUES LESS THAN (64),

PARTITION p1 VALUES LESS THAN (128),

PARTITION p2 VALUES LESS THAN (192),

PARTITION p3 VALUES LESS THAN MAXVALUE);

Query:

SELECT fname, lname, region_code, dob FROM t1

WHERE region_code > 125 AND region_code < 130;

 QP should prune partitions p0 (region_code too low) and p3 (too
high).

 But the capability is somewhat fragile in practice.

Partition Pruning is fragile

 From dba.stackexchange.com:

 The problem with this approach is that partition_year must be
explicitly referenced in queries or partition pruning (highly
desirable because the table is large) doesn't take effect. (Can’t
ask users to add predicates to queries with dates in them)

 Answer:

 … Your view has to apply some form of function to start and
end dates to figure out if they're the same year or not, so I
believe you're out of luck with this approach.

 Our solution to a similar problem was to create materialized
views over the base table, specifying different partition keys on
the materialized views.

 So need to master materialized views to be an expert in DW.

http://dba.stackexchange.com/questions/30346/partition-pruning-with-multiple-date-columns
http://docs.oracle.com/cd/E11882_01/server.112/e25523/part_avail.htm

