
Data Warehousing and

Decision Support, part 3

CS634
Class 24, May 5, 2014

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke, Chapter 25

Partition Pruning
 The QP needs to be smart about partitions/MDC cells

 From Oracle docs, the idea:“Do not scan partitions where there
can be no matching values”.

 Example: partitions of table t1 based on region_code:
PARTITION BY RANGE(region_code)

(PARTITION p0 VALUES LESS THAN (64),

PARTITION p1 VALUES LESS THAN (128),

PARTITION p2 VALUES LESS THAN (192),

PARTITION p3 VALUES LESS THAN MAXVALUE);

Query:

SELECT fname, lname, region_code, dob FROM t1

WHERE region_code > 125 AND region_code < 130;

 QP should prune partitions p0 (region_code too low) and p3 (too
high).

 But the capability is somewhat fragile in practice.

Partition Pruning is fragile

 From dba.stackexchange.com:

 The problem with this approach is that partition_year must be
explicitly referenced in queries or partition pruning (highly
desirable because the table is large) doesn't take effect. (Can’t
ask users to add predicates to queries with dates in them)

 Answer:

 … Your view has to apply some form of function to start and
end dates to figure out if they're the same year or not, so I
believe you're out of luck with this approach.

 Our solution to a similar problem was to create materialized
views over the base table, specifying different partition keys on
the materialized views.

 So need to master materialized views to be an expert in DW.

Parallelism is essential to huge DWs

Shared Memory

(least scalable)

Shared Disk

(medium scalable)

Shared Nothing

(most scalable)

Microsoft SQL

Server

PostgreSQL

MySQL

Oracle RAC

Sybase IQ

Teradata

IBM DB2

Netezza

EnterpriseDB (Postgres)

Greenplum

Vertica

MySQL Cluster

SAP HANA

Table 1: Parallelism approaches taken by different data warehouse
DBMS vendors, from “How to Build a High-Performance Data
Warehouse” by David J. DeWitt, Ph.D.; Samuel Madden, Ph.D.; and
Michael Stonebraker, Ph.D.
(I’ve added bold for the biggest players, green for added entries)

Shared-nothing vs. Shared-disk

6

Views and Materialized Views

Views: review of pp. 86-91

View - rows are not explicitly stored, but computed as

needed from view definition

Base table - explicitly stored

http://dba.stackexchange.com/questions/30346/partition-pruning-with-multiple-date-columns
http://docs.oracle.com/cd/E11882_01/server.112/e25523/part_avail.htm
http://db.csail.mit.edu/madden/high_perf.pdf

7

CREATE VIEW

Given tables for these relations:
Students (ID, name, major)
Enrolled (ID, CourseID, grade)

Can create view:
CREATE VIEW B_Students (name, ID, CourseID) AS

SELECT S.name, S.ID, E.CourseID
FROM Students S, Enrolled E
WHERE S.ID = E.ID AND E.grade = ‘B’;

Now can use B_Students just as if it were a table, for queries

Could be used to shield D_students from view

Can grant select on view, but not on enrolled

8

Updatable Views

SQL-92: Must be defined on a single table using only
selection and projection and not using DISTINCT.

SQL:1999: May involve multiple tables in SQL:1999 if each
view field is from exactly one underlying base table and that
table’s PK is included in view; not restricted to selection
and project, but cannot insert into views that use union,
intersection, or set difference.

So B_Students is updatable by SQL99, and by Oracle 10.

Willie Albino May 15, 20039

Materialized Views
 What is a Materialized View?

 Advantages and Disadvantages

 Creating Materialized Views
 Syntax, Refresh Modes/Options, Build Methods

 Examples

 Dimensions
 What are they?

 Examples

 Slides of Willie Albino from http://www.nocoug.org/download/2003-
05/materialized_v.ppt

Willie Albino May 15, 200310

What is a Materialized View?

 A database object that stores the results of a query

 Features/Capabilities

 Can be partitioned and indexed

 Can be queried directly

 Can have DML applied against it

 Several refresh options are available (in Oracle)

 Best in read-intensive environments

Willie Albino May 15, 200311

Advantages and Disadvantages
 Advantages

 Useful for summarizing, pre-computing, replicating and distributing data

 Faster access for expensive and complex joins

 Transparent to end-users

 MVs can be added/dropped without invalidating coded SQL

 Disadvantages

 Performance costs of maintaining the views

 Storage costs of maintaining the views

Similar to Indexes

 Designed to increase query Execution Performance.

 Transparent to SQL Applications allowing DBA’s to create
and drop Materialized Views without affecting the validity
of Applications.

 Consume Storage Space.

 Can be Partitioned.

 Not covered by SQL standards

 But can be queried like tables

MV Support in DBs: from Wikipedia

 Materialized views were implemented first by the Oracle ,

and Oracle has the most features

 In IBM DB2, they are called "materialized query tables";

 Microsoft SQL Server has a similar feature called

"indexed views".

 MySQL doesn't support materialized views natively, but

workarounds can be implemented by using triggers or

stored procedures or by using the open-source

application Flexviews.

Views vs Materialized Views (Oracle),

from http://www.sqlsnippets.com/en/topic-12874.html

Table View Materialized View

select * from T ;

KEY VAL

---- -----

1 a

2 b

3 c

4

create view v as select

* from t ;

select * from V ;

KEY VAL

----- -----

1 a

2 b

3 c

4

create materialized

view mv as select *

from t ;

select * from MV ;

KEY VAL

---- -----

1 a

2 b

3 c

4

Update to T is not propagated immediately

to simple MV

Table View Materialized

View

update t set val = upper(val);

select * from T ;

KEY VAL

---------- -----

1 A

2 B

3 C

4

select * from V ;

KEY VAL

---------- -----

1 A

2 B

3 C

4

select * from MV ;

KEY VAL

---------- -----

1 a

2 b

3 c

4

MV “refresh“ command

Table View Materialized

View

execute dbms_mview.refresh('MV');

select * from T ;

KEY VAL

---------- -----

1 A

2 B

3 C

4

select * from V ;

KEY VAL

---------- -----

1 A

2 B

3 C

4

select * from MV ;

KEY VAL

---------- -----

1 A

2 B

3 C

4

Materialized View Logs for fast refresh

 There is a way to refresh only the changed rows in a

materialized view's base table, called fast refreshing.

 For this, need a materialized view log (MLOG$_T here)

on the base table t:
create materialized view log on t ;

UPDATE t set val = upper(val) where KEY = 1 ;

INSERT into t (KEY, val) values (5, 'e');

select key, dmltype$$ from MLOG$_T ;

KEY DMLTYPE$$

---------- ----------

1 U

5 I

REFRESH FAST

create materialized view mv REFRESH FAST as select * from t ;

select key, val, rowid from mv ;

KEY VAL ROWID

---------- ----- ------------------

1 a AAAWm+AAEAAAAaMAAA

2 b AAAWm+AAEAAAAaMAAB

3 c AAAWm+AAEAAAAaMAAC

4 AAAWm+AAEAAAAaMAAD

execute dbms_mview.refresh(list => 'MV', method => 'F'); --F for fast

select key, val, rowid from mv ;

--see same ROWIDs as above: nothing needed to be changed

http://en.wikipedia.org/wiki/Oracle_Database
http://en.wikipedia.org/w/index.php?title=Flexviews&action=edit&redlink=1
http://www.sqlsnippets.com/en/topic-12874.html

Now let's update a row in the base table.

update t set val = 'XX' where key = 3 ;

commit;

execute dbms_mview.refresh(list => 'MV', method => 'F');

select key, val, rowid from mv;

KEY VAL ROWID

---------- ----- ------------------

1 a AAAWm+AAEAAAAaMAAA

2 b AAAWm+AAEAAAAaMAAB

3 XX AAAWm+AAEAAAAaMAAC –See update, same old ROWID

4 AAAWm+AAEAAAAaMAAD

So the MV row was updated based on the log entry

Adding Your Own Indexes

create materialized view mv

refresh fast on commit as

select t_key, COUNT(*) ROW_COUNT from t2 group by t_key ;

create index MY_INDEX on mv (T_KEY) ;

select index_name , i.uniqueness , ic.column_name

from user_indexes i inner join user_ind_columns ic using (index_name)

where i.table_name = 'MV' ;

INDEX_NAME UNIQUENES COLUMN_NAME

--------------- --------- ---------------

I_SNAP$_MV UNIQUE SYS_NC00003$ --Sys-generated

MY_INDEX NONUNIQUE T_KEY

Prove that MY_INDEX is in use

using SQL*Plus's Autotrace feature

set autotrace on explain set linesize 95

select * from mv where t_key = 2 ;

T_KEY ROW_COUNT

---------- ----------

2 2

Execution Plan

--

Plan hash value: 2793437614

--

|Id| Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

|0| SELECT STATEMENT | | 1 | 26 | 2 (0)| 00:00:01 |

|1| MAT_VIEW ACCESS BY INDEX ROWID| MV | 1 | 26 | 2 (0)| 00:00:01 |

|*2| INDEX RANGE SCAN | MY_INDEX | 1 | | 1 (0)| 00:00:01 |

--

MV on Join query

create materialized view log on t with rowid, sequence ;

create materialized view log on t2 with rowid, sequence

create materialized view mv

refresh fast on commit enable query rewrite

as select t.key t_key , t.val t_val , t2.key t2_key ,

t2.amt t2_amt , t.rowid t_row_id , t2.rowid t2_row_id

from t, t2

where t.key = t2.t_key ;

create index mv_i1 on mv (t_row_id) ;

create index mv_i2 on mv (t2_row_id) ;

MV with aggregation

create materialized view log on t2 with rowid, sequence (t_key, amt)

including new values ;

create materialized view mv

refresh fast on commit enable query rewrite

as select t_key , sum(amt) as amt_sum , count(*) as row_count ,

count(amt) as amt_count

from t2 group by t_key ;

create index mv_i1 on mv (t_key) ;

MV with join and aggregation

from Oracle DW docs

CREATE MATERIALIZED VIEW LOG ON products WITH SEQUENCE,

ROWID (prod_id, prod_name,…) INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON sales WITH SEQUENCE, ROWID

(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold,

amount_sold) INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW product_sales_mv BUILD IMMEDIATE

REFRESH FAST ENABLE QUERY REWRITE

AS SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales, COUNT(*)

AS cnt, COUNT(s.amount_sold) AS cnt_amt

FROM sales s, products p WHERE s.prod_id = p.prod_id

GROUP BY p.prod_name;

http://docs.oracle.com/cd/B28359_01/server.111/b28313/basicmv.htm

Willie Albino May 15, 200325

Dimensions

 A way of describing complex data relationships

 Used to perform query rewrites, but not required

 Defines hierarchical relationships between pairs of columns

 Hierarchies can have multiple levels

 Each child in the hierarchy has one and only one parent

 Each level key can identify one or more attribute

 Dimensions should be validated using the
DBMS_OLAP.VALIDATE_DIMENSION package

 Bad row ROWIDs stored in table: mview$_exceptions

Willie Albino May 15, 200326

Example of Creating A Dimension
CREATE DIMENSION time_dim

LEVEL CAL_DATE IS calendar.CAL_DATE

LEVEL PRD_ID IS calendar.PRD_ID

LEVEL QTR_ID IS calendar.QTR_ID

LEVEL YEAR_ID IS calendar.YEAR_ID

LEVEL WEEK_IN_YEAR_ID IS calendar.WEEK_IN_YEAR_ID

HIERARCHY calendar_rollup

(CAL_DATE CHILD OF

PRD_ID CHILD OF

QTR_ID CHILD OF YEAR_ID)

HIERARCHY week_rollup

(CAL_DATE CHILD OF

WEEK_IN_YEAR_ID CHILD OF YEAR_ID)

ATTRIBUTE PRD_ID DETERMINES PRD_DESC

ATTRIBUTE QTR_ID DETERMINES QTR_DESC;

Willie Albino May 15, 200327

Example of Using Dimensions

-- Step 1 of 4

-- Create materialized view (join-aggregate type)

CREATE MATERIALIZED VIEW items_mv

BUILD IMMEDIATE

REFRESH ON DEMAND

ENABLE QUERY REWRITE

AS

SELECT l.slr_id ,

c.cal_date,

sum(l.gms) gms

FROM items l,

calendar c

WHERE

l.end_date=c.cal_date

GROUP BY

l.slr_id, c.cal_date;

Willie Albino May 15, 200328

Example of Using Dimensions (cont’d)

-- Step 2 of 4: (not really required, for demonstration only)

-- Execute query based on “quarter”, not “date”, without a time

dimension

-- Note that the detail tables are accessed

SQL> select c.qtr_id, sum(l.gms) gms

2 from items l, calendar c

3 where l.end_date=c.cal_date

4 group by l.slr_id, c.qtr_id;

Execution Plan

--

SELECT STATEMENT Optimizer=CHOOSE (Cost=16174 Card=36258…)

SORT (GROUP BY) (Cost=16174 Card=36258 Bytes=1160256)

HASH JOIN (Cost=81 Card=5611339 Bytes=179562848)

TABLE ACCESS (FULL) OF ’CALENDAR' (Cost=2 Card=8017 …)

TABLE ACCESS (FULL) OF ’ITEMS' (Cost=76 Card=69993 …)

Willie Albino May 15, 200329

Example of Using Dimensions (cont’d)

-- Step 3 of 4: Create time dimension (see slide .-4 for SQL)

@cr_time_dim.sql
Dimension Created
-- Step 4 of 4: Rerun query based on “quarter” with time
dimension

SQL> select c.qtr_id, sum(l.gms) gms

2 from items l, calendar c

3 where l.end_date=c.cal_date

4 group by l.slr_id, c.qtr_id;

Execution Plan

--

SELECT STATEMENT Optimizer=CHOOSE (Cost=3703 Card=878824…)

SORT (GROUP BY) (Cost=3703 Card=878824 Bytes=44820024)

HASH JOIN (Cost=31 Card=878824 Bytes=44820024)

VIEW (Cost=25 Card=8017 Bytes=128272)

SORT (UNIQUE) (Cost=25 Card=8017 Bytes=128272)

TABLE ACCESS (FULL) OF ‘CALENDAR’ (Cost=2 Card=8017…)

TABLE ACCESS (FULL) OF ‘ITEMS_MV’ (Cost=3 Card=10962…)

DW Partitioning, Oracle case

 Clearly a win to partition fact table, big MVs by time

intervals for roll-out, clustering effect

 Can sub-partition fact table by a dimension attribute, but

need to modify queries to get QP to optimize

 Ex: partition by date intervals, product category

 Query: select p.subcategory, … from F where … (no

mention of p.category)

 Modified query: select p.subcategory … where … AND

category=‘Soft Drinks’ --now QP uses partition pruning

 MVs are usually rolled-up, much smaller, don’t need

effective partitioning so much

Summary

 Query Rewrite using dimension hierarchies apparently

helps only Oracle MVs, not partition pruning.

 So put raw data in one fact table, partitioned for roll-out

 Create MVs with various roll-ups, for queries, also

partitioned by time

 Add indexes to MVs

 Note MVs are much smaller than raw fact tables

 Every day (say) add data to raw fact table, refresh MVs

Oracle OLAP Cube

 Another way to hold data, optimized for cube queries

 Related to master tables: fact tables, dimensions

 Excel can get data with MDX

 Not itself a MV, but can be used like one

 i.e. SQL queries can be automatically rewritten to use the

OLAP cube, run faster

 Other OLAP servers exist too

Working cheaply: what about mysql?

 If your data can be fit into memory, you don’t need fancy software… so buy

a terabyte of memory…no longer a crazy idea.

 Example: Dell’s PowerEdge FX2 FC830 (review June ‘15) can take up to

1.5TB memory, 4 CPU sockets for Xeon processors with 4-18 cores/CPU.

Basic system (8GB memory) $8,300. Maybe $15K for 1TB compatible RAM

(not sure).

 Have warehouse data in mysql on disk, comes into memory as accessed.

 Mysql has no MV’s, but can compute a joined table periodically as needed

for Excel

 Use Excel for UI

http://www.storagereview.com/dell_poweredge_fx2_fd332_fc830_review

