CS 240 Programming in C

Process Control

Nov 1, 2022

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022



Announcement

Homework 4 posted on the course webpage.
Pascal's Triangle: https://en.wikipedia.org/wiki/Pascal%27s_triangle
Due date for homework is Nov 15.

There will be a quiz in next class (nov 3).

Topics for the quiz are Structures, Input/Output, File Handling.

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 2/25



Process

@ Processes are the primitive units for allocation of system resources.
Each process has its own address space and (usually) one thread of
control. A process executes a program; you can have multiple
processes executing the same program, but each process has its own
copy of the program within its own address space and executes it
independently of the other copies.

@ Processes are organized hierarchically. Each process has a parent
process which explicitly arranged to create it. The processes created
by a given parent are called its child processes. A child inherits many
of its attributes from the parent process.

@ There are three distinct operations involved: creating a new child
process, causing the new process to execute a program, and
coordinating the completion of the child process with the original
program.

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 3/25



Properties of Process

@ Creation of each process requires separate system calls for each
process.

@ It is an isolated execution entity and does not share data and
information.

@ Processes use the IPC(Inter-Process Communication) mechanism for
communication that significantly increases the number of system calls.

@ Process management takes more system calls.

A process has its stack, heap memory with memory, and data map.

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 4/25



Process |dentifier

@ In computing, the process identifier (a.k.a. process ID or PID) is a
number used by most operating system kernels—such as those of
Unix, macOS and Windows—to uniquely identify an active process.

@ When a program is called, a process is created and a process ID is
issued. The process ID is given by the function getpid() defined in
<unistd.h>.

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 5/25



Unix commands

ps List current process
kill kill process
ps aux list all processes

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 6/25



Background Process

A long running program can be controlled by introducing a process
running in the background. For example, we can run a C program in the
background by typing

./programl &

Background processes continues to run even when you logout. You can
check the status of a background process by typing > ps at the login.

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 7/25



@ Thread is an execution unit that is part of a process. A process can
have multiple threads, all executing at the same time. It is a unit of
execution in concurrent programming. A thread is lightweight and
can be managed independently by a scheduler. It helps you to
improve the application performance using parallelism.

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 8/25



Properties of Thread

@ Single system call can create more than one thread
@ Threads share data and information.

@ Threads shares instruction, global, and heap regions. However, it has
its register and stack.

@ Thread management consumes very few, or no system calls because
of communication between threads that can be achieved using shared
memory.

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 9/25



Key Difference Between Process and Thread

@ Process means a program is in execution, whereas thread means a
segment of a process.

A Process is not Lightweight, whereas Threads are Lightweight.

@ A Process takes more time to terminate, and the thread takes less
time to terminate.

Process takes more time for creation, whereas Thread takes less time
for creation.

Process likely takes more time for context switching whereas as
Threads takes less time for context switching.

A Process is mostly isolated, whereas Threads share memory.

Process does not share data, and Threads share data with each other.

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 10/25



Running a command

@ The easy way to run another program is to use the system function.
This function does all the work of running a subprogram, but it
doesn’t give you much control over the details: you have to wait until
the subprogram terminates before you can do anything else.

e Function: int system (const char *command)

@ If the command argument is a null pointer, a return value of zero
indicates that no command processor is available.

@ The system function is declared in the header file ‘stdlib.h’.

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 11/25



Process Identification

The pid_t data type represents process IDs.
@ The getpid function returns the process ID of the current process.

@ The getppid function returns the process ID of the parent of the
current process.

Your program should include the header files ‘unistd.h’ and ‘sys/types.h’
to use these functions.

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 12/25



Creating a Process

The fork function is the primitive for creating a process. It is declared in
the header file ‘unistd.h’.

@ The child process has its own unique process ID.

o If the operation is successful, there are then both parent and child
processes and both see fork return, but with different values: it
returns a value of 0 in the child process and returns the child’s
process ID in the parent process.

@ If process creation failed, fork returns a value of -1 in the parent
process. The following errno error conditions are defined for fork:

o EAGAIN - There aren’t enough system resources to create another
process, or the user already has too many processes running.
o ENOMEM - The process requires more space than the system can

supply.

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 13/25



Executing a File

For executing a file as a process image, exec family of functions can be
used. These functions make a child process, that executes a new program
after it has been forked. It is declared in the header file ‘unistd.h’.

@ The exec call replaces the entire current contents of the process with

a new program. It loads the program into the current process space
and runs it from the entry point.

char *args[] = {"ps", "-a", NULL};
execvp("ps", args);

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 14 /25



Exec functions

execl: execute a program

execlp: execute a program in the path

execle: execute a program with environment

execv: execute a program with arguments

execvp: execute a program with arguments in the path

execvpe: execute a program with arguments and environment in the
path

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 15/25



Process completion

pid_t waitpid (pid_t pid, int *status-ptr, int options)

The waitpid function is used to request status information from a child
process whose process ID is pid. Normally, the calling process is suspended
until the child process makes status information available by terminating.

@ Other values for the pid argument have special interpretations. A
value of -1 or WAIT_ANY requests status information for any child
process; a value of 0 or WAIT_MYPGRP requests information for any
child process in the same process group as the calling process;

@ If status information for a child process is available immediately, this
function returns immediately without waiting. If more than one
eligible child process has status information available, one of them is
chosen randomly, and its status is returned immediately.

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 16 /25



Process related functions

system()
fork()

exec functions
waitpid()
getpid()
getppid()
exit()

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 17 /25



Inter Process Communication

A process can be of two types:
@ Independent process.
@ Co-operating process.

There are many situations when co-operative nature can be utilized for
increasing computational speed, convenience, and modularity.
Inter-process communication (IPC) is a mechanism that allows processes
to communicate with each other and synchronize their actions. Processes
can communicate with each other through:

@ Shared Memory

o Message passing

@ Sockets

@ Pipes / Named Pipes

@ Semaphores

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 18 /25



Inter Process Communication

Figure 1 - Shared Memory and Message Passing

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022



Shared Memory

The problem with pipes, fifo and message queue — is that for two process
to exchange information. The information has to go through the kernel.

@ Server reads from the input file.

@ The server writes this data in a message using either a pipe, fifo or
message queue.

@ The client reads the data from the IPC channel,again requiring the
data to be copied from kernel’s IPC buffer to the client’s buffer.

o Finally the data is copied from the client's buffer.

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 20/25



Shared Memory

ftok(): is use to generate a unique key.

shmget(): upon successful completion, shmget() returns an identifier
for the shared memory segment.

shmat(): Before you can use a shared memory segment, you have to
attach the process to it using shmat().

shmdt(): When you're done with the shared memory segment, your
program should detach itself from it using shmdt().

shmctl(): when you detach from shared memory, it is not destroyed.
So, to destroy shmctl() is used.

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 21/25



Shared Memory: Sample Program

Let us consider the following sample program.

@ Create two processes, one is for writing into the shared memory
(shm_write.c) and another is for reading from the shared memory
(shm_read.c)

@ The program performs writing into the shared memory by write
process (shm_write.c) and reading from the shared memory by
reading process (shm_read.c)

@ In the shared memory, the writing process, creates a shared memory
of size 1K (and flags) and attaches the shared memory

@ The write process writes 5 times the Alphabets from ‘A’ to ‘E’ each
of 1023 bytes into the shared memory. Last byte signifies the end of
buffer

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 22 /25



Shared Memory: Sample Program

@ Read process would read from the shared memory and write to the
standard output.

@ Reading and writing process actions are performed simultaneously

@ After completion of writing, the write process updates to indicate
completion of writing into the shared memory (with complete variable
in struct shmseg)

@ Reading process performs reading from the shared memory and
displays on the output until it gets indication of write process
completion (complete variable in struct shmseg)

@ Performs reading and writing process for a few times for simplication
and also in order to avoid infinite loops and complicating the program

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 23 /25



Sample Programs

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022




Resource Links

e https://ftp.gnu.org/old-gnu/Manuals/glibc-
2.2.3/html_chapter/libc_26.html

e https://www.guru99.com/difference-between-process-and-thread.html

@ https://www.geeksforgeeks.org/inter-process-communication-ipc/

Aaditya Tamrakar UMass Boston CS 240 Nov 1, 2022 25/25



