
CS 240 Programming in C

Process Control, Threads

Nov 3, 2022

Aaditya Tamrakar UMass Boston CS 240 Nov 3, 2022 1 / 13



Thread

Thread is an execution unit that is part of a process. A process can
have multiple threads, all executing at the same time. It is a unit of
execution in concurrent programming. A thread is lightweight and
can be managed independently by a scheduler. It helps you to
improve the application performance using parallelism.

Aaditya Tamrakar UMass Boston CS 240 Nov 3, 2022 2 / 13



Thread

Aaditya Tamrakar UMass Boston CS 240 Nov 3, 2022 3 / 13



Properties of Thread

Single system call can create more than one thread
Threads share data and information.
Threads shares instruction, global, and heap regions. However, it has
its register and stack.
Thread management consumes very few, or no system calls because
of communication between threads that can be achieved using shared
memory.

Aaditya Tamrakar UMass Boston CS 240 Nov 3, 2022 4 / 13



Key Difference Between Process and Thread

Process means a program is in execution, whereas thread means a
segment of a process.
A Process is not Lightweight, whereas Threads are Lightweight.
A Process takes more time to terminate, and the thread takes less
time to terminate.
Process takes more time for creation, whereas Thread takes less time
for creation.
Process likely takes more time for context switching whereas as
Threads takes less time for context switching.
A Process is mostly isolated, whereas Threads share memory.
Process does not share data, and Threads share data with each other.

Aaditya Tamrakar UMass Boston CS 240 Nov 3, 2022 5 / 13



Terminology

Before we can dive in depth into threading concepts, we need to get
familiarized with a few terms related to threads, parallelism and
concurrency.

Lightweight Process (LWP) can be thought of as a virtual CPU
where the number of LWPs is usually greater than the number of
CPUs in the system. Thread libraries communicate with LWPs to
schedule threads. LWPs are also sometimes referred to as kernel
threads.
X-to-Y model. The relationship between LWPs and Threads. This
can vary from 1:1 to X:1 or X:Y depending on the operating system
implementation and/or user-level thread library in use. The 1:1 model
is used by Linux, some BSD kernels, and some Windows versions.
Contention Scope is how threads compete for system resources (i.e.
scheduling).

Aaditya Tamrakar UMass Boston CS 240 Nov 3, 2022 6 / 13



Terminology

Bound threads have system-wide contention scope, which means
they compete with other processes across the entire system. Unbound
threads have process contention scope.
Thread-safe means that the program protects shared data, possibly
through the use of mutual exclusion.
Reentrant code means that a program can have more than one
thread executing concurrently.
Async-safe means that a function is asynchronous-safe, or
asynchronous-signal safe, if it can be called safely and without side
effects from within a signal handler context.
Concurrency vs. Parallelism - They are not the same! Parallelism
implies simultaneous running of code (which is not possible, in the
strict sense, on uniprocessor machines) while concurrency implies that
many tasks can run in any order and possibly in parallel.

Aaditya Tamrakar UMass Boston CS 240 Nov 3, 2022 7 / 13



Thread Synchronization

Thread synchronization is the concurrent execution of two or more threads
that share critical resources. Threads should be synchronized to avoid
critical resource use conflicts. Otherwise, conflicts may arise when
parallel-running threads attempt to modify a common variable at the same
time.
The threads library provides three synchronization mechanisms:

mutexes - Mutual exclusion lock: Block access to variables by other
threads. This enforces exclusive access by a thread to a variable or set
of variables.
joins - Make a thread wait till others are complete (terminated).
condition variables - data type pthread_cond_t

Aaditya Tamrakar UMass Boston CS 240 Nov 3, 2022 8 / 13



Mutual Exclusion

Mutual exclusion is a method of serializing access to shared resources. You
don’t want one thread modifying a variable that is already being modified
by another thread! Another scenario is a dirty read, in which the value is
being updated and another thread reads an old value.

Aaditya Tamrakar UMass Boston CS 240 Nov 3, 2022 9 / 13



Mutual Exclusion

Mutual exclusion allows the programmer to create a defined protocol for
serializing access to shared data or resources. Mutex is a lock that one can
virtually attach to some resource. If a thread wishes to modify or read a
value from a shared resource, the thread must first gain the lock. Once
the thread finishes using the resource, it unlocks the mutex, which allows
other threads to access the resource. Such a protocol must be enforced
across all threads that may touch the resource being protected. Logically,
a mutex is a lock that one can virtually attach to some resource.

Aaditya Tamrakar UMass Boston CS 240 Nov 3, 2022 10 / 13



Mutual Exclusion

As an analogy, you can think of a mutex as a safe with only one key (for a
standard mutex case), and the resource it is protecting lies within the safe.

Aaditya Tamrakar UMass Boston CS 240 Nov 3, 2022 11 / 13



Demo

Sample Programs

Aaditya Tamrakar UMass Boston CS 240 Nov 3, 2022 12 / 13



Resource Links

https://ftp.gnu.org/old-gnu/Manuals/glibc-
2.2.3/html_chapter/libc_26.html
https://www.guru99.com/difference-between-process-and-thread.html
https://www.geeksforgeeks.org/multithreading-c-2/
https://www.cs.cmu.edu/afs/cs/academic/class/15492-
f07/www/pthreads.html
http://www.csc.villanova.edu/ mdamian/threads/posixthreads.html
https://randu.org/tutorials/threads/

Aaditya Tamrakar UMass Boston CS 240 Nov 3, 2022 13 / 13


