
CS 240 Programming in C

Socket Programming

Nov 8 , 2022

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 1 / 24



Process communication

Typically two processes communicate with each other on a single system
through one of the following inter process communication techniques.

Pipes
Message queues
Shared memory

There are several other methods. But the above are some of the very
common ways of inter-process communication.

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 2 / 24



Client Server System
Client server model is a software architecture paradigm prevalent in
distributed applications. A server has information resources and processes
that provide answers to queries and other services to remote clients over
the network.

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 3 / 24



Connection?

How does a client identify the server with which it wants to communicate?

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 4 / 24



Connection

A client needs to know two things about the server - the Internet Protocol
(IP) address and the port number. The IP address can be a traditional
32-bit address or a 128-bit newer address expressing as 2001:db8::1:2:3:4,
where each character is a hexadecimal digit representing four bits of
address.

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 5 / 24



Socket

Sockets are used for communication between a server and a client process.
The server’s code runs first, which opens a port and listens for incoming
connection requests from clients. Once a client connects to the same
(server) port, the client or server may send a message. A socket is a
network communication end point at a host.

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 6 / 24



Socket

Sockets allow you to exchange information between processes on the same
machine or across a network, distribute work to the most efficient machine,
and they easily allow access to centralized data. Socket application
program interfaces (APIs) are the network standard for TCP/IP.

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 7 / 24



Real world use: Web request

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 8 / 24



Hypertext Transfer Protocol (HTTP)

HTTP is a simple request-response protocol, defined in RFC 2616. It
defines communication for web browsers and servers. Figure shows the
basic structure of HTTP in relation to the functions that establish the
socket connection. The client—a web browser sends an HTTP request to
the server and receives a response. HTTP applications use TCP
connections for their transport layer.

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 9 / 24



Socket programming in C: flowchart

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 10 / 24



File Descriptor

In Unix and Unix-like computer operating systems, a file descriptor
(FD, less frequently fildes) is a process-unique identifier (handle) for a
file or other input/output resource, such as a pipe or network socket.
File descriptors typically have non-negative integer values, with
negative values being reserved to indicate "no value" or error
conditions.

int Name symbolic const file stream
0 Standard input STDIN_FILENO stdin
1 Standard output STDOUT_FILENO stdout
2 Standard error STDERR_FILENO stderr

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 11 / 24



Socket creation

sockfd: socket descriptor, an integer (like a file-handle)
domain: integer, specifies communication domain.

AF_LOCAL: Same host local machine
AF_INET: IPv4 Host
AF_INET: IPv6 Host
SOCK_STREAM: TCP(reliable, connection oriented)
SOCK_DGRAM: UDP(unreliable, connectionless)

protocol: Protocol value for Internet Protocol(IP), which is 0. This is
the same number which appears on protocol field in the IP header of
a packet.

Code
int sockfd = socket(domain, type, protocol)

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 12 / 24



Setsockopt

This helps in manipulating options for the socket referred by the file
descriptor sockfd. This is completely optional, but it helps in reuse of
address and port. Prevents error such as: “address already in use”.

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 13 / 24



Setsockopt

sockfd: socket descriptor
level: integer, specifies the protocol level at which the option resides.

SOL_SOCKET: Socket options
SOL_IP: IP options
SOL_TCP: TCP options
SOL_UDP: UDP options

optname: integer, specifies a single option to set
optval: pointer to buffer in which the value for the requested
option(s) are to be returned
optlen: integer, specifies the size of the buffer pointed to by the
optval argument

Code
int setsockopt(int sockfd, int level, int optname, const void *optval,
socklen_t optlen);

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 14 / 24



Bind

sockfd: socket descriptor
myaddr: pointer to a sockaddr structure containing the address to be
bound to the socket
addrlen: integer, size of the address structure

Code
int bind(int sockfd, const struct sockaddr *myaddr, socklen_t addrlen);

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 15 / 24



Listen

sockfd: socket descriptor
backlog: integer, specifies the maximum length to which the queue of
pending connections for sockfd may grow

Code
int listen(int sockfd, int backlog);

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 16 / 24



Accept

sockfd: socket descriptor
addr: pointer to a sockaddr structure. This structure is filled in with
the address of the peer socket, as known to the communications
layer. The exact format of the address returned addr is determined by
the socket’s address family
addrlen: integer, size of the address structure

Code
int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 17 / 24



Connect

sockfd: socket descriptor
serv_addr: pointer to a sockaddr structure containing the address of
the server to which the connection should be established
addrlen: integer, size of the address structure

Code
int connect(int sockfd, const struct sockaddr *serv_addr, socklen_t
addrlen);

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 18 / 24



Send

sockfd: socket descriptor
buffer: pointer to a buffer containing the message to be sent
length: integer, length of the message in bytes
flags: integer, specifies the type of message transmission

Code
int send(int sockfd, const void *buffer, size_t length, int flags);

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 19 / 24



Recv

sockfd: socket descriptor
buffer: pointer to a buffer where the message should be stored
length: integer, length of the buffer in bytes
flags: integer, specifies the type of message reception

Code
int recv(int sockfd, void *buffer, size_t length, int flags);

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 20 / 24



Server Program: time_server.c

In time_server.c program, we have created a server. In the code :
The call to the function ‘socket()’ creates an UN-named socket inside
the kernel and returns an integer known as socket descriptor
This function takes domain/family as its first argument. For Internet
family of IPv4 addresses we use AF_INET
The second argument ‘SOCK_STREAM’ specifies that the transport
layer protocol that we want should be reliable ie it should have
acknowledgement techniques. For example : TC
The third argument is generally left zero to let the kernel decide the
default protocol to use for this connection. For connection oriented
reliable connections, the default protocol used is TCP
The call to the function ‘bind()’ assigns the details specified in the
structure ‘serv_addr’ to the socket created in the step above. The
details include, the family/domain, the interface to listen on(in case
the system has multiple interfaces to network) and the port on which
the server will wait for the client requests to come

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 21 / 24



Server Program: time_server.c

The call to the function ‘listen()’ with second argument as ’10’
specifies maximum number of client connections that server will
queue for this listening socket
After the call to listen(), this socket becomes a fully functional
listening socket
In the call to accept(), the server is put to sleep and when for an
incoming client request, the three way TCP handshake* is complete,
the function accept () wakes up and returns the socket descriptor
representing the client socket
The call to accept() is run in an infinite loop so that the server is
always running and the delay or sleep of 1 sec ensures that this server
does not eat up all of your CPU processing
As soon as server gets a request from client, it prepares the date and
time and writes on the client socket through the descriptor returned
by accept().

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 22 / 24



Client Program: time_client.c
In the time_client.c program, we create a client which will connect to
the server and receive date and time from it. In the above piece of
code :
We see that here also, a socket is created through call to socket()
function
Information like IP address of the remote host and its port is bundled
up in a structure and a call to function connect() is made which tries
to connect this socket with the socket (IP address and port) of the
remote host
Note that here we have not bind our client socket on a particular port
as client generally use port assigned by kernel as client can have its
socket associated with any port but In case of server it has to be a
well known socket, so known servers bind to a specific port like HTTP
server runs on port 80 etc while there is no such restrictions on clients
Once the sockets are connected, the server sends the data
(date+time) on clients socket through clients socket descriptor and
client can read it through normal read call on the its socket descriptor.

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 23 / 24



Resource Links

https://www.geeksforgeeks.org/socket-programming-cc/

https://www.tutorialspoint.com/unix_sockets/network_addresses.htm
https://www.softprayog.in/programming/network-socket-
programming-using-tcp-in-c
https://www.thegeekstuff.com/2011/12/c-socket-programming/

Aaditya Tamrakar UMass Boston CS 240 Nov 8 , 2022 24 / 24


