
CS 240 Programming in C

Constants and Variables

September 13, 2022

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 1 / 42

Schedule

1 Variables

2 Constants

3 Format printing – printf

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 2 / 42

Decimal-Binary Conversion

Before anything, I want to introduce the decimal-binary number
conversion. Because we are familiar with decimal numbers, whereas
computer CPUs are dealing with binary numbers.

For a number in base 10 for example 15;

15 = 2 * 7 + 1
7 = 2 * 3 + 1
3 = 2 * 1 + 1
1 = 2 * 0 + 1

Thus 1510 = 11112. Specifically,

15 = 23 ∗ 1 + 22 ∗ 1 + 21 ∗ 1 + 20 ∗ 1

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 3 / 42

Decimal-Binary Conversion

Conversion steps:
1. Divide the number by 2.
2. Get the integer quotient for the next iteration.
3. Get the remainder for the binary digit.
4. Repeat the steps until the quotient is equal to 0.

https://www.rapidtables.com/convert/number/decimal-to-binary.html

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 4 / 42

Bytes and Bits

Every number in computer is represented by binary number.
The unit representation in memory is 1 Byte which equals 8 bits.
Right now your computer is probably 64 bits, which means the CPU can
process 64 bits data each time.
Let’s get into today’s topics.

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 5 / 42

Variable

As we covered before, variables in C are just names to memory
addresses.
And for different data types of a certain variable, the memory
allocated for it is different.
Specifically, there is a void data type of a variable, which only
contains an memory address without the information of the amount
of memory it owns.
Void data type is often used in pointer type casting.

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 6 / 42

Char

Char type in C takes up only 1 byte of memory
There are signed char and unsigned char, whose values are range from
-128 to 127 or 0 to 255. For example,

char c1 = 65;
unsigned c2 = 65;

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 7 / 42

So, a char variable is essentially an one byte integer, why and how it is
used to represent a letter?

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 8 / 42

ASCII Table

Computers can only understand numbers, so an ASCII code is the
numerical representation of a character such as ’a’ or ’@’.
To utilize the letter meaning of a char variable, we have to treat it
associated with ASCII table.
In standard library stdio, there are function like putchar and printf
which will print out the letter of a char onto screen. Lets see a demo.

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 9 / 42

ctype.h

Turn to textbook pg 249, there is a list of functions for testing characters
defined in <ctype.h>

isalnum(c) isalpha(c) or isdigit(c)
isalpha(c) isupper(c) or islower(c)

int tolower(c) convert c to lower case
int toupper(c) convert c to upper case

Question: can you write the implemation yourself for tolower and to upper

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 10 / 42

Integer

Based on how large memory an integer variable can hold, there are 3 types
of integer in C:

short 2 bytes
int 4 bytes
long 8 bytes

These are signed integer types, for each there are also unsigned:

unsigned short 2 bytes
unsigned int 4 bytes
unsigned long 8 bytes

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 11 / 42

Integer

1, Things are simple when integers are all positive.

2, Things become complex when there are negative integers.

3, Because CPU calculates the equivalent addition for a subtraction which
results computer stores a negative as its 2’s complement form.

4, Let’s take an example

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 12 / 42

2’s Complement

1, Assume we have an data type of int_4 which contains 4 bits and the
first bit is a signed bit, for which 0 stands for positive and 1 for negative.
For example:

int_4 a = 3; // 0011
int_4 b = -2; // 1010 (without 2’s complement form)

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 13 / 42

2’s Complement

2, The process of 2’s complement for negative integers,

-2 1010 (without 2’s complement form)
1101 1’s complement form
1110 2’s complement form

3, 2’s complement of a positive stays the same.

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 14 / 42

2’s Complement

How to calculate 1’s complement for a binary number?
The 1’s complement can be easily calculated by inverting
the 0s & 1s of a given binary number.

How to calculate 2’s complement for a binary number?
1. Find the one’s complement by inverting 0s & 1s

of a given binary number.
2. Add 1 to the one’s complement provides the

two’s complement.

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 15 / 42

2’s Complement Addition

4, let’s do a + b with addition of their 2’s complement form.

variable value 2’s complement form
a -2 1110
b 3 + 0011

10001

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 16 / 42

2’s Complement

5, Since a and b are of int_4 type which only contains 4 bits, the result
10001 will be cut to 0001 which is 1.

6, Thus a + b == 3 - 2 = 1
7, Let’s do another example by letting a = -2, b = -1:

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 17 / 42

2’s Complement Addition

Example: a = -2, b = -1

variable value 2’s complement form
a -2 1110
b -1 + 1111

11101

Let’s compute -3’s 2’s complement form:

-3 1011 (without 2’s complement form)
1101 2’s complement form

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 18 / 42

Overflow of Integers’

Arithmetic data types in C has fixed memory storage, which means if
the value to be assigned is larger that a variable can hold, it will just
discard those highest bits.
Like in the above demo which 11101 being cut into 1101, we will see
some demo in real C.
The implementation overflow of unsigned integer is defined behavior,
however the overflow of signed integer is not, or
implementation-defined behaviour.

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 19 / 42

Undefined Behaviour

In C, some expressions yield undefined behavior. The standard
explicitly chooses to not define how a compiler should behave if it
encounters such an expression.
As a result, a compiler is free to do whatever it sees fit and may
produce useful results, unexpected results, or even crash.
Code that invokes UB may work as intended on a specific system with
a specific compiler, but will likely not work on another system, or with
a different compiler, compiler version or compiler settings.
For portability, try avoid them

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 20 / 42

In memory -0

In memory -0 means in memory bit level of 1000,0000 for char, and
1000,0000,0000,0000 for short.
Not the same thing with -0 in your code.
In memory -0 for a signed integer type, will be treated differently
based on machine’s architecture. Page 36 in text book.
It is treated as the least negative number of its data type on a 2’s
complement machine, for example, -0 for a char type is -128
So the range of signed char is [-128, 127]. the range of signed integer
is [−231 − 1, 231]

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 21 / 42

Demo of integer overflow

Integer overflow and initialization are implementation-dependent
behaviour.
Turn to p257 on our text book.
header <1imits.h> defines constants for the sizes of integral types.

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 22 / 42

Demo of integer overflow

int main(void)
{

printf("%lu\n",sizeof(int));
printf("This if for signed:\n");
printf(" INT_MAX : %11d\n", INT_MAX);
printf("1 + INT_MAX : %11d\n", INT_MAX + 1);
printf(" INT_MIN : %11d\n",INT_MIN);
printf("INT_MIN - 1 : %11d\n",INT_MIN - 1);
printf("This if for unsigned:\n");
printf(" INT_MAX : %11u\n", UINT_MAX);
printf("1 + INT_MAX : %11u\n", UINT_MAX + 1);
printf(" INT_MIN : %11u\n",0);
printf("INT_MIN - 1 : %11u\n", - 1);
return 0;

}

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 23 / 42

A pitfall

We have not talk about typecast yet, but it is a good reminder to
make here.
It is usually not a good idea to mix signed and unsigned integers in
arithmetic operations.
It is better practice to first cast unsigned to signed and then do
operations.
It is often wrong to cast negative to an unsigned integer.

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 24 / 42

What will be printed out ? and Why ?

int main(void)
{

unsigned int a = 1000;
signed int b = -1;

if (a > b)
printf("a is more than b");

else
printf("a is less or equal than b");

return 0;
}

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 25 / 42

What will be printed out ? and Why ?

int main(void)
{

unsigned int a = 1000; // 1111101000
signed int b = -1; // 1111111111

if (a > b)
printf("a is more than b");

else
printf("a is less or equal than b");

return 0;
}

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 26 / 42

Fixed Width Integer Types
As different implementations may have different width for int or long etc.,
since c99 the header <stdint.h> provides several fixed-width signed
integer type definitions.

The width is explicit with their data type names.

/* commonly used types include */

uint32_t u32 = 32; /* exactly 32-bits wide */

uint8_t u8 = 255; /* exactly 8-bits wide */

int64_t i64 = -65 /* exactly 64 bit in two’s complement
representation */

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 27 / 42

Floating-point Numbers

There are just signed floating point data type. For example,

Type Storage Value range Precision
float 4 byte 1.2E-38 to 3.4E+38 6 decimal

double 8 byte 2.3E-308 to 1.7E+308 15 decimal
long double 10 byte 3.4E-4932 to 1.1E+4932 19 decimal

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 28 / 42

Single-precision floating-point format
Now Let’s take a look how C stores floating-point number with float type.

radix is 2, 1 sign bit, 8 exponent bits and 24 for mantissa bits (one
implicit bit and 23 fraction bits)
More: https://en.wikipedia.org/wiki/Single-precision_
floating-point_format

The real value assumed by a given 32-bit binary data is computed as:

(−1)b31 × 2(b30b29...b23)2−127) ×
(
1.b22b21 . . . b0

)
2

which gives :

(−1)sign × 2(e−127) ×
(
1 +

23∑
i=1

b23−i2−i)
2

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 29 / 42

https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Single-precision_floating-point_format

Constants of Floats

Turn to Page 257 in which you will see:

FLT_RADIX 2 radix of exponent representation
FLT_ROUND 1 floating-point rounding mode for addition
FLT_DIG 6 decimal digits of precision
FLT_EPSILO 1E-05 smallest number x such that 1.0 + x <> 1.0

FLT_MANT_DIG 24 number of base FLT_RADIX digits in mantissa
FLT_MAX 1E+37 maximum floating-point number
FLT_MAX_EXP 128 maximum n such that FLT_RADIX^n-1 is

re-presentable
FLT_MIN 1E-37 minimum normalized floating-point number
FLT_MIN_EXP -125 minimum n such that 10^n is a normalized

number

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 30 / 42

math.h

Turn to textbook pg 250, there is a list of functions for testing characters
defined in <math.h>

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 31 / 42

Constants

Constants or literals are fixed value in a C program.
There are four basic constant data types in C:

1 Integer constant/literal
2 Floating number constant/literal
3 Character constant/literal
4 String constant/literal

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 32 / 42

Integer Constant

An integer literal can be a decimal, octal, or hexadecimal constant.
A prefix specifies the base or radix: 0x or 0X for hexadecimal, 0 for
octal, and nothing for decimal.
An integer literal can also have a suffix that is a combination of U/u
and L/l, for unsigned and long, respectively.
The suffix is not case sensitive.

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 33 / 42

Integer Constant Example!

10, -10 /* decimal/int */
010, -010 /* octal */
0x1A, -0x1A, /* hexadecimal */
10u /* unsigned int */
10l, -010l /* long */
10ul, 10lu /* unsigned long */

Note:
1, the relative position of l and u does not matter.
2, for an signed number the first left bit is the sign bit,

if it is 1 means negative if it is 0 means positive.
3, for example,

signed char memory
1 0000,0001

-1 1000,0001

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 34 / 42

Illegal Constant Number Expressions

For example: 078

What’s wrong with this expression?

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 35 / 42

Illegal Constant Number Expressions

For example: 078

Decimal: {0,1,2,...,9}
Octal : {0,1,2,...,7}
Hexadecimal : {0,1,2,...,9, A,..,F}

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 36 / 42

Floating-point Constants

decimal form exponential form
3.1415926, 31425927E-5 or 31425927e-5

(denotes double)
3.1415926f, 31425927E-5f or 31425927e-5f

(denotes float)

0, The e/E denoted radix of 10.

1, Floating number literals without suffix "f" will be
treated as double.

2, For the decimal floating number, we have to have the dot
part with other parts.

3, For the exponential form, we must include the integer
part, the e/E and the exponent part.

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 37 / 42

Floating-point Constants

324, 314E are illegal floating numbers.

Try them, see what will happen.
printf("%f\n", 314);
printf("%f\n", 314e);

.1 and 1. are legal

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 38 / 42

Character Constants

Character constants are enclosed in single quotes, e.g., ’x’.
There are plain character like ’x’, and also escape character ’\n’
0 and ’0’ are different. ’0’ represents the ASCII integer value of ’0’.
Page 37. Character literal can also be specified by octal or
hexadecimal digits within this form:

#define VTAB ’\013’
#define BELL ’\007’
#define VTAB ’\xb’
#define BELL ’\x7’

’0’ and "0" are also different things in C.

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 39 / 42

Character Constants

Here is a list of escape character:

\\ \ character
\’ ’ character
\" " character
\? ? character
\a Alert or bell
\b Backspace
\f Form feed
\n Newline
\r Carriage return
\t Horizontal tab
\v Vertical tab
\ooo Octal number of one to three digits
\xhh... Hexadecimal number of one or more digits

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 40 / 42

String Constants

String constants are enclosed in double quotes, like "hello world".
And they are just a sequence of character constants
String constants can be concatenated at compile time:

"hello," " world"
is equivalent to

"hello, world".

The internal representation of a string has a null character ’\0’ at the
end, so the physical storage required is one more than the number of
characters written between the quotes
We will cover string more later.

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 41 / 42

printf

On page 154.

Aaditya Tamrakar UMass Boston CS 240 September 13, 2022 42 / 42

	Variables
	Constants
	Format printing – printf

