
CS 240 Programming in C

Pointers and Memory Allocation

September 27, 2022

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 1 / 21

& operator

A pointer is a variable that contains the address of a variable.
The unary operator & gives the address of an object.
The & operator only applies to objects in memory: variables and array
elements.
It cannot be applied to expressions, constants, or register variables.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 2 / 21

Pointers

1
1https://www.geeksforgeeks.org/pointers-in-c-and-c-set-1-introduction-arithmetic-

and-array/
Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 3 / 21

Pointers

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 4 / 21

* operator

The unary operator * is the indirection or dereferencing operator;
when applied to a pointer, it accesses the object the pointer points to.
The declaration of a pointer variable is :

[datatype] *[variable name]
for example: int *ip;

means ip is pointer variable which reference an integer variable. i.e.
*ip in an int, and ip is an pointer which stores an address value.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 5 / 21

Initialization of a pointer

There is no legal default value to a pointer variable. You have to
initiablize it before using it.
C guarantees that zero is never a valid address for data, so a pointer
of value of zero can be used to signal an abnormal event.
The symbolic constant NULL is often used in place of zero which is
defined in <stdio. h>.
A pointer has to be initialized to the address of an existing variable
before any meaningful using. For example:

int i, *ip;
ip = &i; // or int i, *ip = &i;
*ip = 3;

This is illegal
int *ip;
*ip = 3;

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 6 / 21

* operator

The *ip in above case is just an integer variable, so it can be put into
the expression where integer can be put in. For example:

*ip = * ip + 10;
*ip += 1;
*ip << 2;
*ip < 2;
++*ip;
(*ip)++; // means (*p) = (*p) + 1
*ip++; // means *(ip = ip + 1)

because unary operators like *
and ++ associate right to left.

these are all legal expressions.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 7 / 21

Pointers

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 8 / 21

Pointer as arguments

Since C passes arguments to functions by value, there is no direct way
for the called function to alter a variable in the calling function.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 9 / 21

Pointer and Arrays

In C, there is a strong relationship between pointers and arrays.
In fact array variable is just one type of pointer. It can be directly
assigned to a pointer variable. For example:

int a[10] = {-1, -2}, *p = a;
printf("%d\n", *p);

Besides a is just storing the address of the first element of a.
int a[10] = {-1}, *p = a;
printf("%d\n", a == &a[0]);

// what will be print out ?

And p can also be applied array subscripting like:
printf("%d\n", p[1]); // or
printf("%d\n", *(p+1));

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 10 / 21

Pointer and Arrays

In evaluating a[i], C actually converts it to *(a+i) immediately; the
two forms are equivalent.
&a[i] and a+i are also identical

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 11 / 21

Pointer and Arrays – One difference

There is one difference between an array name and a pointer that
must be kept in mind.
A pointer is a variable, so p=a and p++ are legal. But an array name
is not a variable; constructions like a=p and a++ are illegal.
Array name is equivalent to a symbolic constant address value, and it
has to be a stack address.
A pointer can reference to a heap address. We will see how later.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 12 / 21

Pointer and Arrays

As formal parameters in a function definition, char s[] and char *s are
equivalent.
It is preferred of the latter because it says more explicitly that the
parameter is a pointer. That’s why you see a lot "char *s" in library
function headers.
If one is sure that the elements exist, it is also possible to index
backwards in an array; p[-1], p[-2], and so on are syntactically legal,
But we can not refer to the elements that immediately precede p[0].
Of course, it is illegal to refer to objects that are not within the array
bounds.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 13 / 21

Character Pointers and Functions

String constant.
char amessage[] = "now is the time"; /* an array */
char *pmessage = "now is the time"; /* a pointer */

amessage is an array. Its individual characters within the array may be
changed but amessage will always refer to the same storage.
pmessage is a pointer, initialized to point to a string constant; the
pointer may subsequently be modified to point elsewhere.
All in all amessange is left value, while pmessage is a right value.

All in all amessange is left value, while pmessage is a right value.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 14 / 21

Pointer Arrays; Pointers to Pointers

char *lineptr[3];
lineptr[0] = "hello";

lineptr is an array of 3 elements, each element of which is a pointer to
a char .

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 15 / 21

Two-dimensional Arrays

Declaration and initialization.
int arr[2][6] = {

{1, 2, 3, 4, 5, 6},
{1, 2, 3, 4, 5, 6}

};

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 16 / 21

Three-dimensional Arrays

Declaration and initialization.

int x[2][3][2] = {
{ {0, 1}, {2, 3}, {4, 5} },
{ {6, 7}, {8, 9}, {10, 11} }

};

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 17 / 21

Dynamic Memory Allocation

void *malloc(size_t size)
malloc returns a pointer to space for an object of size size , or NULL if the
request cannot be satisfied. The space is uninitialized.

ptr = (cast-type*) malloc(byte-size)
Example:
int *ptr;
ptr = (int*) malloc(100 * sizeof(int));
Since the size of int is 4 bytes, this statement will allocate 400 bytes of
memory. And, the pointer ptr holds the address of the first byte in the
allocated memory.

If space is insufficient, allocation fails and returns a NULL pointer.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 18 / 21

Dynamic Memory Allocation

“calloc” or “contiguous allocation” method in C is used to dynamically
allocate the specified number of blocks of memory of the specified type. it is
very much similar to malloc() but has two different points and these are:

It initializes each block with a default value ‘0’.

It has two parameters or arguments as compare to malloc().

void *calloc(size_t nobj, size_t size)
calloc returns a pointer to space for an array of nobj objects, each of size
size , or NULL if the request cannot be satisfied. The space is initialized to
zero bytes.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 19 / 21

Dynamic Memory Allocation

void *realloc(void *p, size_t size)
realloc changes the size of the object pointed to by p to size . The contents
will be unchanged up to the minimum of the old and new sizes. If the new
size is larger, the new space is uninitialized. realloc returns a pointer to the
new space, or NULL if the request cannot be satisfied, in which case *p is
unchanged.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 20 / 21

Dynamic Memory Allocation

void free(void *p) free deallocates the space pointed to by p; it does nothing
if p is NULL . p must be a pointer to space previously allocated by calloc ,
malloc , or realloc.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 21 / 21

