CS 240 Programming in C

Pointers and Memory Allocation

September 27, 2022

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022

@ A pointer is a variable that contains the address of a variable.
@ The unary operator & gives the address of an object.

@ The & operator only applies to objects in memory: variables and array
elements.
@ It cannot be applied to expressions, constants, or register variables.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 2/21

Pointers

How pointer works in C

var
int var = 10; }0/

#2008
int *ptr = &var;
*ptr = 20;

int **ptr = &ptr;
**ptr = 30;

1

https:/ /www.geeksforgeeks.org/pointers-in-c-and-c-set-1-introduction-arithmetic-
and-array/ oy <@ =» «=» T 9ag
Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 3/21

ptr

» 0x7fffa0757dd4

0x7fff98b459e8 <4———————— Address of pointer variable ptr

10 +1———— Value of variable var (*ptr)

Ox7fffa0757dd4 «——— Address of variable var (Stored at ptr)

1

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 4/21

* operator

@ The unary operator * is the indirection or dereferencing operator;
@ when applied to a pointer, it accesses the object the pointer points to.
@ The declaration of a pointer variable is :

[datatype] *[variable name]
for example: int *ip;

means ip is pointer variable which reference an integer variable. i.e.
*ip in an int, and ip is an pointer which stores an address value.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 5/21

Initialization of a pointer

There is no legal default value to a pointer variable. You have to
initiablize it before using it.
C guarantees that zero is never a valid address for data, so a pointer
of value of zero can be used to signal an abnormal event.
The symbolic constant NULL is often used in place of zero which is
defined in <stdio. h>.
A pointer has to be initialized to the address of an existing variable
before any meaningful using. For example:

int i, *ip;

ip = &i; // or int i, *ip = &i;

*ip = 3;
This is illegal

int *ip;

*ip = 3;

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 6/21

* operator

@ The *ip in above case is just an integer variable, so it can be put into
the expression where integer can be put in. For example:

*ip = * ip + 10;

*ip += 1;

*ip << 2;

*ip < 2;

++*xip;

(xip)++; // means (*p) (xp) + 1

*ip++; // means *(ip = ip + 1)
because unary operators like *
and ++ associate right to left.

these are all legal expressions.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 7/21

Pointers

v[0] v[1] v[2]
10 100 200
Ox7fff9a9e7920 0x7fff9a9e7924 0x7fff9a9e7928
prr++ ptr++

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 8/21

Pointer as arguments

@ Since C passes arguments to functions by value, there is no direct way
for the called function to alter a variable in the calling function.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 9/21

Pointer and Arrays

@ In C, there is a strong relationship between pointers and arrays.

@ In fact array variable is just one type of pointer. It can be directly
assigned to a pointer variable. For example:
int al10] = {-1, -2}, *p = a;
printf ("%d\n", *p);

@ Besides a is just storing the address of the first element of a.
int al10] = {-1}, *p = a;
printf("%d\n", a == &a[0]);
// what will be print out 7

@ And p can also be applied array subscripting like:
printf ("%d\n", p[1]1); // or
printf ("%d\n", *(p+1));

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 10/21

Pointer and Arrays

@ In evaluating ali], C actually converts it to *(a+i) immediately; the
two forms are equivalent.

@ &ali] and a+i are also identical

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 11/21

Pointer and Arrays — One difference

@ There is one difference between an array name and a pointer that
must be kept in mind.

@ A pointer is a variable, so p=a and p++ are legal. But an array name
is not a variable; constructions like a=p and a++ are illegal.

@ Array name is equivalent to a symbolic constant address value, and it
has to be a stack address.

@ A pointer can reference to a heap address. We will see how later.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 12/21

Pointer and Arrays

@ As formal parameters in a function definition, char s[] and char *s are
equivalent.

@ It is preferred of the latter because it says more explicitly that the
parameter is a pointer. That's why you see a lot "char *s" in library
function headers.

@ If one is sure that the elements exist, it is also possible to index
backwards in an array; p[-1], p[-2], and so on are syntactically legal,

@ But we can not refer to the elements that immediately precede p[0].

@ Of course, it is illegal to refer to objects that are not within the array
bounds.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 13 /21

Character Pointers and Functions

@ String constant.

char amessage[] = "now is the time"; /* an array */
char *pmessage = "now is the time"; /* a pointer */

e amessage is an array. lts individual characters within the array may be
changed but amessage will always refer to the same storage.

@ pmessage is a pointer, initialized to point to a string constant; the
pointer may subsequently be modified to point elsewhere.

e All in all amessange is left value, while pmessage is a right value.

@ All in all amessange is left value, while pmessage is a right value.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 14 /21

Pointer Arrays; Pointers to Pointers

° char *lineptr[3];
lineptr[0] = "hello";

lineptr is an array of 3 elements, each element of which is a pointer to
a char .

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 15/21

Two-dimensional Arrays

@ Declaration and initialization.
int arr[2][6] = {
{1’ 2’ 3, 4’ 5, 6}’
{1, 2, 3, 4, 5, 6}
}s;

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 16 /21

Three-dimensional Arrays

@ Declaration and initialization.

int x[2][3][2] = {
{ {0, 1}, {2, 3}, {4, 5} 1},
{ {6, 7, {8, 9}, {10, 11} }
};

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 17 /21

Dynamic Memory Allocation

@ void *malloc(size_t size)

malloc returns a pointer to space for an object of size size , or NULL if the
request cannot be satisfied. The space is uninitialized.

@ ptr = (cast-type*) malloc(byte-size)
Example:
int *ptr;
ptr = (int*) malloc(100 * sizeof(int));
Since the size of int is 4 bytes, this statement will allocate 400 bytes of
memory. And, the pointer ptr holds the address of the first byte in the
allocated memory.

@ If space is insufficient, allocation fails and returns a NULL pointer.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 18 /21

Dynamic Memory Allocation

@ “calloc” or “contiguous allocation” method in C is used to dynamically
allocate the specified number of blocks of memory of the specified type. it is
very much similar to malloc() but has two different points and these are:

@ It initializes each block with a default value ‘0.
@ It has two parameters or arguments as compare to malloc().

@ void *calloc(size_t nobj, size_t size)
calloc returns a pointer to space for an array of nobj objects, each of size
size , or NULL if the request cannot be satisfied. The space is initialized to
zero bytes.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 19/21

Dynamic Memory Allocation

@ void *realloc(void *p, size_t size)

realloc changes the size of the object pointed to by p to size . The contents
will be unchanged up to the minimum of the old and new sizes. If the new
size is larger, the new space is uninitialized. realloc returns a pointer to the
new space, or NULL if the request cannot be satisfied, in which case *p is
unchanged.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 20/21

Dynamic Memory Allocation

@ void free(void *p) free deallocates the space pointed to by p; it does nothing
if pis NULL . p must be a pointer to space previously allocated by calloc ,
malloc , or realloc.

Aaditya Tamrakar UMass Boston CS 240 September 27, 2022 21/21

