
CS 240 Programming in C
Guest Lecture: Real-world Applications

March 29, 2023



Where and why do people use C in 
2023?



C as a Common Interface ("Lingua Franca")

● Code written 30+ years ago runs on today's hardware
○ Across multiple new processor architectures (x86_64, ARM, …)

● Almost every language has a way to call C functions / libraries
○ FFI: Foreign Function Interface

○ Python's cffi, Java's JNI, Javascript's node-ffi, …

● Example: sqlite3 is a popular C library that nearly every 

language has bindings for

https://cffi.readthedocs.io/en/latest/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://github.com/node-ffi/node-ffi
https://www.sqlite.org/index.html


Embedded Systems

● Microcontrollers, single-purpose

● Small processors, limited memory (RAM)
○ 32 kilobytes vs. 32 gigabytes

● Often no operating system

● Used in consumer electronics, robotics, automotive



Real-time Systems

● Applications where the program must perform an action within 
a deadline to be considered "correct" or "operational"
○ Robotics, telecommunications, automotive

○ Financial systems, high-frequency trading

○ Video games, online multiplayer

● C doesn't "solve" these problems, but it's frequently used when 

programmers want to control the program execution details



…but C has competition in 2023!

● Rust is gaining adoption in embedded and real-time systems

● Go is frequently used for modern "systems programming" 
○ Databases, network services, command-line tools

● C++ gets an "honorable mention", but has its own niches



C Development Tools



● Header files create abstractions
○ Control which parts of the code are "public" (visible to other files)

● Languages like Java use keywords like "public" instead

● Case study: stdio.h
○ FILE *fopen(const char * pathname, const char * mode)
○ "FILE" is a struct, but stdio.h doesn't expose its internals

What are header files for? (#includes)



● Warnings 
○ Recommended flags: -Werror -Wall -Wextra -Wconversion
○ The compiler needs to support ~30 year old code, warnings can 

point to parts of the code that are likely buggy even if it "usually" 
works.

● Optimization levels
○ Flags: -O0, -O1, -O2, -O3, -Og, -Os, …
○ If your code has undefined behavior, more likely it may break at 

higher optimization levels! 

Making friends with the compiler ❤

https://emojipedia.org/red-heart/


● gdb – Debugger (or look for a debugger in your favorite IDE)
● valgrind memcheck – Detects some memory errors

○ Mistakes around malloc + free
● kcov – Code coverage: which lines of code actually ran?

● Compiler flags to enable debug symbols: -ggdb3 (or -g)
○ If the output seems unreadable, add one of these flags

Why did my program crash?



● 4 main limits: CPU, memory, disk, and network
● Algorithms can help when CPU-bound (generally)

● C gives you a lot of control to optimize memory layout & usage

● perf (Linux) – Sampling profiler
○ "What functions is my program spending time in?"

Why is my program slow?



● Manpages (e.g. man malloc)

● cdecl.org – "C gibberish ↔ English"

● Modern C, by Jens Gustedt (PDF)

● godbolt.org – Compiler Explorer (advanced)

What is going on?

https://cdecl.org/
https://gustedt.gitlabpages.inria.fr/modern-c/
https://hal.inria.fr/hal-02383654v1/document
https://godbolt.org/

