CS 240 Programming in C

Storage classes and Operators

Feb 2, 2023

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

Storage Classes

@ A storage class defines the scope (visibility) and lifetime of variables
and/or functions within a C Program. They precede the type that
they modify. We have four different storage classes in a C program

e auto - default storage class for all local variables.

e extern - used to define a global variable or function, which will also be
used in other files.

e static - The static storage class instructs the compiler to keep a local
variable in existence during the lifetime of the program instead of
creating and destroying it each time it comes into and goes out of
scope.

o register - used to define local variables that should be stored in a CPU
register instead of memory/cache.

@ Book Chapter: 4, page: 73

@ More: https://www.geeksforgeeks.org/storage-classes-in-c/

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023 2/41

External Variables

@ In C, the function name has to be unique, even if they are compiled
separately from different files since they will be used to reference their
binary code body.

@ Variables usually exist inside a function body, and for each function
there can not exist two variables that assume the same name; inside
different functions, there can be variables that assume the same name.

@ Well, there can also exist variables outside any function, and these
variables are called external variables.

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

External Variables

@ Like function names, external variable names must also be unique
from each other.

o External variables and internal variables can share the same name,
and they reference different memory addresses. And they have
different access scopes.

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

Block and Scope

@ Block: A section of code that is grouped together
e In C, blocks are delimited by curly braces
{ [block statements] }
e or the parenthesis of main function
int main O { int i =0, j =1 3};
@ Scope: the area of a program where a variable can be referenced

e For each different entity that an identifier designates, the the identifier
is visible (i.e., can be used) only within a region of program text called

its scope

Feb 2, 2023

UMass Boston CS 240

Aaditya Tamrakar

Block and Internal Variable

@ Variables defined within a block are local to the block where they are
defined which means that they are not accessible the outside of the
block; they come and go with the block of codes executing and
finishing.

@ Internal variables are also often called "auto" variables. Inside a
function block, these two definitions are equal (it is just the "auto"
keyword is often ignored):

int j = 0;
auto int j;

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

o If a variable was not defined within this block, then it will resort to
the outer block for the definition of this variable, until outside the
function within the same file.

@ Let's see demos.

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

External Variables

@ For accessing an external variable that is not defined within this
source code, we have to use the "extern" keyword.

@ Let's see a demo.

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

Question:

Are external variables the variables defined
by the "extern" keyword?

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

External Variables and the "extern" key word

@ No.

@ An external variable is just a variable being defined outside any
function.

@ The "extern" keyword is used for searching the external /global
variable reference somewhere else. It means there is no variable
definition here within this function.

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

Declaration vs Definition

@ A variable declared by "extern" is a declaration, which does not cause
memory allocation.

@ A variable definition means at this line of code, this variable will be
allocated and reside in memory.

extern int i; Declaration
extern int i=0; This is Definition, not Declaration

int i; int i=0; These are all variable definitiomns

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

Declaration vs Definition

@ A variable definition is also a declaration, but a declaration is not
necessary to be a definition.

@ A variable is to be used has to at least have a declaration first.

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

External Variables

Advantages:

@ If a large number of variables must be shared among functions,
external variables are more convenient and efficient than long
argument lists.

@ External variables also retain their values after the exit of a function
call, since no function owns it solely.

o External (global) variables are favored in high-performance
computing. They allow additional optimization by compilers.

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

External Variables

Disadvantages:

@ It is problematic for decoupling a program structure, which makes a
big software into less dependent parts such that it is easy for
maintaining and testing etc.

@ If their value gets corrupted, hard to trace the reason. They make
functions dependent on their external environment

@ In fact, software architecture/design standards often prohibit the use
of external variables

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

External Variables (External Static)

@ External variables can be accessed by any function in the program.
@ what if we want to limit its scope?

@ The static declaration applied to an external variable or function
limits the scope of that object to the source file being compiled.

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

Static Local Variable

@ Static local variable is a local variable that retains and stores its value
between function calls or blocks and remains visible only to the
function or block in which it is defined.

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

Example: Static External

#include <stdlib.h>
double drand48(void);
void srand48(long int seedval);

@ The pseudorandom number generator drand48() is a family of
functions

@ They keep an external static variable X as the seed of the generators

@ We must call srand48() to initialize the seed to generate a different
sequence of numbers.

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

Example: Static Internal

#include <stdio.h>

int counter(){
static int num;
return num++;

int main(void){
for (int i=0;i<5;i++) counter();
printf ("%d\n", counter());

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

The register Variables

@ A register declaration advises the compiler that this variable will be
heavily used

@ We want it placed in a machine register, but the compiler is free to
ignore this suggestion if it needs registers

@ Can only be applied to automatic variables

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

The register Variables

@ Register variables can be defined to local variables within functions or
blocks, they are stored in CPU registers instead of RAM to have quick
access to these variables.

Example: register int age;
@ A register variable may actually not be placed into registers in many
situations.

@ And it is not possible to parse the address of a register variable
regardless of whether the variable is actually placed in a register.

@ The specific restrictions on the number and types of register variables
vary from machine to machine.

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023 20 /41

Example: Register Variables

The variables declared using the register have no default value. These
variables are often declared at the beginning of a program.

#include <stdio.h>

int main(void) {

{
register int i;
int *p=&i ;
/*it produces an error when the compilation occurs,
we cannot get a memory location when dealing
with CPU registerx/
return O;
b

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

Summary

Storage
Class

auto
register
extern

Static
(local)
Static
(global)

Declaration

Inside a
function/block

Inside a
function/block

Outside all
functions

Inside a
function/block

Outside all
functions

Aaditya Tamrakar

Storage
Memory
CPU
Registers
Memory

Memory

Memory

Default Initial
Value
Unpredictable
Garbage

Zero

Zero

Zero

Scope

Within the function/block

Within the function/block

Entire the file and other files where the variable is
declared as extern

Within the function/block

Global

UMass Boston CS 240

Lifetime

Within the
function/block

Within the
function/block
program runtime

program runtime

program runtime

An operator is a symbol that tells the compiler to perform specific
mathematical or logical functions. C language is rich in built-in operators
and provides the following types of operators !

Arithmetic Operators
Relational Operators
Logical Operators
Bitwise Operators

Assignment Operators

Misc Operators

!Link: https://www.tutorialspoint.com/cprogramming/c_operators.htm
Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023 23 /41

Arithmetic Operators

Assume variable A holds 10 and variable B holds 20 then

Operator Description Example
+ Adds two operands. A+B=30
- Subtracts second operand from the first. A-B=-10
N Multiplies both operands. A* B =200
/ Divides numerator by de-numerator. B/A=2

% Modulus Operator and remainder of after an integer B%A=0

division.
++ Increment operator increases the integer value by one. A++ =11

-- Decrement operator decreases the integer value by one. A--=9

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

Relational Operators

Assume variable A holds 10 and variable B holds 20 then

Operator

Description

Checks if the values of two operands are equal or not. If
yes, then the condition becomes true.

Checks if the values of two operands are equal or not. If
the values are not equal, then the condition becomes

true.

Checks if the value of left operand is greater than the
value of right operand. If yes, then the condition
becomes true.

Checks if the value of left operand is less than the value

of right operand. If yes, then the condition becomes true.

Checks if the value of left operand is greater than or
equal to the value of right operand. If yes, then the
condition becomes true.

Checks if the value of left operand is less than or equal
to the value of right operand. If yes, then the condition
becomes true.

Example

(A ==B) is not true.

(A l=B) is true.

(A>B) is not true.

(A<B)is true.

(A>=B) is not true.

(A<=B)is true.

Aaditya Tamrakar

UMass Boston CS 240

Logical Operators

Assume variable A holds 1 and variable B holds 0, then

Operator Description Example

&& Called Logical AND operator. If both the operands are (A && B) is false.
non-zero, then the condition becomes true.

Il Called Logical OR Operator. If any of the two operandsis (A ll B) is true.
non-zero, then the condition becomes true.

! Called Logical NOT Operator. It is used to reverse the (A && B) is true.
logical state of its operand. If a condition is true, then
Logical NOT operator will make it false.

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

Bitwise Operators

The bitwise operator works on bits and performs the bit-by-bit operation.

P q P&q plq pPAq
0 0 0 0 0
0 1 0 1 1
1 1 1 1 0
1 0 0 1 1

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

Bitwise Operators

The bitwise operator works on bits and performs the bit-by-bit operation.

Operator

&

<<

>>

Description

Binary AND Operator copies a bit to the result if it exists
in both operands.

Binary OR Operator copies a bit if it exists in either
operand.

Binary XOR Operator copies the bit if it is set in one
operand but not both.

Binary One's Complement Operator is unary and has the
effect of 'flipping' bits.

Binary Left Shift Operator. The left operands value is
moved left by the number of bits specified by the right
operand.

Binary Right Shift Operator. The left operands value is
moved right by the number of bits specified by the right
operand.

Example

(A&B)=12,i.e.,0000 1100

(A1B) =61, i.e., 0011 1101

(ANB) =49, i.e.,0011 0001

(~A) = ~(60), i.e,. -0111101

A<<2=240i.e., 1111 0000

A>>2=15i.e.,0000 1111

Aaditya Tamrakar UMass Boston CS 240

Feb 2, 2023

Assignment Operators

Operator Description Example

= Simple assignment operator. Assigns values from right C =A+ B will assign the value of
side operands to left side operand A+BtoC

+= Add AND assignment operator. It adds the right operand
to the left operand and assign the result to the left C+=Ais equivalentto C=C + A
operand.

-= Subtract AND assignment operator. It subtracts the right
operand from the left operand and assigns the result to C-=AisequivalenttoC=C-A
the left operand.

= Multiply AND assignment operator. It multiplies the right
operand with the left operand and assigns the result to C*=Ais equivalentto C=C*A
the left operand.

I= Divide AND assignment operator. It divides the left
operand with the right operand and assigns the resultto ~ C /=Alis equivalentto C=C /A
the left operand.

Yo= M(?dulus AND assignment operator. It takes modulus C %= Ais equivalent to C = C %
using two operands and assigns the result to the left A
operand.
<<= Left shift AND assignment operator. C<<=2issameasC=C<<2
>>= Right shift AND assignment operator. C>>=2issameasC=C>>2
&= Bitwise AND assignment operator. C&=2issameasC=C &2
A= Bitwise exclusive OR and assignment operator. Ch=2issameasC=C"2
|= Bitwise inclusive OR and assignment operator. Cl=2issameasC=Cl2

Aaditya Tamrakar ass Boston CS 240

Misc Operators

Operator Description

sizeof() Returns the size of a variable.

&

Returns the address of a variable.

Pointer to a variable.

Conditional Expression.

Example
sizeof(a), where a is integer, will return 4.
&a; returns the actual address of the variable.
*a:

If Condition is true ? then value X : otherwise
value Y

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

Operators Precedence Table

Reference on Chapter 2.12.

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

Decision Making

Decision-making structures require that the programmer specifies one or
more conditions to be evaluated or tested by the program, along with a
statement or statements to be executed if the condition is determined to
be true, and optionally, other statements to be executed if the condition is

determined to be false.

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

Decision Making

If condition If condition
is true is false

conditional /
code

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

Condition

C programming language assumes any non-zero and non-null values as
true, and if it is either zero or null, then it is assumed a false value.

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

The 7 : Operator

Expl 7 Exp2 : Exp3;
Where Expl, Exp2, and Exp3 are expressions. Notice the use and
placement of the colon.

@ The value of a 7 expression is determined like this

@ Expl is evaluated. If it is true, then Exp2 is evaluated and becomes
the value of the entire? expression.

o If Expl is false, then Exp3 is evaluated and its value becomes the
value of the expression.

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

Header Files

Library Functions in Different Header Files

assert.h - Program assertion functions

ctype.h - Character type functions

locale.h - Localization functions

math.h - Mathematics functions

setjmp.h - Jump functions

signal.h - Signal handling functions

stdarg.h - Variable arguments handling functions
stdio.h - Standard Input/Output functions
stdlib.h - Standard Utility functions

string.h - String handling functions

time.h - Date time functions

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023 36 /41

Ctype.h Functions

Function Return Use
Type

isalnum(c) | int Determine if the argument is alphanumeric or
not

isalpha(c) |int Determine if the argument is alphabetic or not

isasecii(c) int Determine if the argument is ASCII character
or not

isdigit{c) int Determine if the argument is a decimal digit or
not.

toaseii(c) int Convert value of argument to ASCII

tolower(c) |int Convert character to lower case

toupper(c) | int Convert letter to uppercase

2

%https: //www.startertutorials.com/blog/functions-in-c.html

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

Math.h Functions

Function Return Type | Use

ceil(d) double Returns a value rounded up to next higher integer
floor(d) double Returns a value rounded up to next lower integer
cos(d) double Returns the cosine of d

sin(d) double Returns the sine of d

tan(d) double Returns the tangent of d

exp(d) double Raise e to the power of d

fabs(d) double Returns the absclute value of d

pow(dl, d2) | double Returns d1 raised to the power of d2

sqri(d) double Returns the square root of d

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

Stdlib.h Functions

Funetion Return Type Use

abs(1) int Return the absolute value of i

exit(u) void Close all file and buffers, and terminate the
program

rand(void) int Return a random positive integer

calloc(ul, u2) | void* Allocate memory for an array having ul
elements, each of length u2 bytes

malloc(u) void* Allocate u bytes of memory

realloc(p,u) void™® Allocate u bytes of new memory to the pointer
variable p

free(p) void Free a block of memory whose beginning is

indicated by p

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

ring.h Functions

Function Return Type | Use

stremp(s1,s2) | int Compare two strings

strepy(s1,s2) char* Copy string s2 to s1

strlen(s) int Return the number of characters in string s
strrev(s) char™® Return the reverse of the string s

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

time.h Functions

Function Return type | Use

difftime(11,12) | double Return the difference between 11 ~ 12,

time(p) longint Return the number of seconds elapsed
beyond a designated base time

Aaditya Tamrakar UMass Boston CS 240 Feb 2, 2023

	External Variables
	Scope rule
	Operators

