
CS 240 Programming in C

Array and Pointers

February 21, 2023

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 1 / 28

Array

Arrays are a kind of data structure that can store a fixed-size sequential
collection of elements of the same type or in simple terms - a collection of
variables of the same type.

It is a group of variables of similar data types referred to by a single
element.
Its elements are stored in a contiguous memory location.
The size of the array should be mentioned while declaring it.
Array elements are always counted from zero (0) onward.
Array elements can be accessed using the position of the element in
the array.
The array can have one or more dimensions.

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 2 / 28

Arrays

1

1https://www.geeksforgeeks.org/arrays-in-c-cpp/
Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 3 / 28

Why do we need Arrays?

We can use normal variables (v1, v2, v3, ..) when we have a small number
of objects, but if we want to store a large number of instances, it becomes
difficult to manage them with normal variables. The idea of an array is to
represent many instances in one variable.

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 4 / 28

About arrays

Advantages:
Code Optimization: we can retrieve or sort the data efficiently.
Random access: We can get any data located at an index position.

Disadvantages:
Size Limit: We can store only the fixed size of elements in the array.
It doesn’t grow its size at runtime.

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 5 / 28

Declaring Arrays

Single-dimensional array:
Any C data type may be used as the type, but the array size must be an
integer constant greater than zero.

type arrayName [arraySize];

Example:

double balance[10];
int account_no[10];

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 6 / 28

Initializing Arrays

// option 1
double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

// option 2
double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};

// Option 3
double balance[5] = {[0] = 1000.0, ... [4] = 50.0};

// option 4
double balance[5];
balance[0] = 1000.0;
...
balance[4] = 50.0;

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 7 / 28

Arrays Example

#include <stdio.h>
int main() {

int dailyTemperatures[7] = {73, 68, 71, 65, 72, 69, 75};

printf("Daily temperatures for the week:\n");
for (int i = 0; i < 7; i++) {

printf("Day %d: %d degrees Fahrenheit\n",
i+1, dailyTemperatures[i]);

}

return 0;
}

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 8 / 28

Passing Array to Function

// Formal parameters as a pointer:
void myFunction(int *param) { ... }

// Formal parameters as a sized array:
void myFunction(int param[10]) { ... }

// Formal parameters as an unsized array:
void myFunction(int param[]) { ... }

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 9 / 28

Example Function with Array parameter

double getAverage(int arr[], int size) {
double avg, sum = 0;
for (int i = 0; i < size; ++i) {

sum += arr[i];
}
avg = sum / size;
return avg;

}

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 10 / 28

Example Contd.

#include <stdio.h>
/* function declaration */
double getAverage(int arr[], int size);

int main () {
/* an int array with 5 elements */
int balance[5] = {1000, 2, 3, 17, 50};
double avg;

/* pass pointer to the array as an argument */
avg = getAverage(balance, 5) ;

/* output the returned value */
printf("Average value is: %f ", avg);
return 0;

}

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 11 / 28

& operator

A pointer is a variable that contains the address of a variable.
The unary operator & gives the address of an object.
The & operator only applies to objects in memory: variables and array
elements.
It cannot be applied to expressions, constants, or register variables.

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 12 / 28

Pointers

2
2https://www.geeksforgeeks.org/pointers-in-c-and-c-set-1-introduction-arithmetic-

and-array/
Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 13 / 28

Pointers

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 14 / 28

* operator

The unary operator * is the indirection or dereferencing operator;
when applied to a pointer, it accesses the object the pointer points to.
The declaration of a pointer variable is :

[datatype] *[variable name]
for example: int *ip;

means ip is pointer variable which reference an integer variable. i.e.
*ip in an int, and ip is an pointer which stores an address value.

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 15 / 28

Initialization of a pointer

There is no legal default value to a pointer variable. You have to
initiablize it before using it.
C guarantees that zero is never a valid address for data, so a pointer
of value of zero can be used to signal an abnormal event.
The symbolic constant NULL is often used in place of zero which is
defined in <stdio. h>.
A pointer has to be initialized to the address of an existing variable
before any meaningful using. For example:

int i, *ip;
ip = &i; // or int i, *ip = &i;
*ip = 3;

This is illegal
int *ip;
*ip = 3;

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 16 / 28

* operator

The *ip in above case is just an integer variable, so it can be put into
the expression where integer can be put in. For example:

*ip = * ip + 10;
*ip += 1;
*ip << 2;
*ip < 2;
++*ip;
(*ip)++; // means (*p) = (*p) + 1
*ip++; // means *(ip = ip + 1)

because unary operators like *
and ++ associate right to left.

these are all legal expressions.

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 17 / 28

Pointers

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 18 / 28

Pointer as arguments

Since C passes arguments to functions by value, there is no direct way
for the called function to alter a variable in the calling function.

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 19 / 28

Pointer and Arrays

In C, there is a strong relationship between pointers and arrays.
In fact array variable is just one type of pointer. It can be directly
assigned to a pointer variable. For example:

int a[10] = {-1, -2}, *p = a;
printf("%d\n", *p);

Besides a is just storing the address of the first element of a.
int a[10] = {-1}, *p = a;
printf("%d\n", a == &a[0]);

// what will be print out ?

And p can also be applied array subscripting like:
printf("%d\n", p[1]); // or
printf("%d\n", *(p+1));

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 20 / 28

Pointer and Arrays

In evaluating a[i], C actually converts it to *(a+i) immediately; the
two forms are equivalent.
&a[i] and a+i are also identical

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 21 / 28

Pointer and Arrays – One difference

There is one difference between an array name and a pointer that
must be kept in mind.
A pointer is a variable, so p=a and p++ are legal. But an array name
is not a variable; constructions like a=p and a++ are illegal.
Array name is equivalent to a symbolic constant address value, and it
has to be a stack address.
A pointer can reference to a heap address. We will see how later.

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 22 / 28

Pointer and Arrays

As formal parameters in a function definition, char s[] and char *s are
equivalent.
It is preferred of the latter because it says more explicitly that the
parameter is a pointer. That’s why you see a lot "char *s" in library
function headers.
If one is sure that the elements exist, it is also possible to index
backwards in an array; p[-1], p[-2], and so on are syntactically legal,
But we can not refer to the elements that immediately precede p[0].
Of course, it is illegal to refer to objects that are not within the array
bounds.

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 23 / 28

Character Pointers and Functions

String constant.
char amessage[] = "now is the time"; /* an array */
char *pmessage = "now is the time"; /* a pointer */

amessage is an array. Its individual characters within the array may be
changed but amessage will always refer to the same storage.
pmessage is a pointer, initialized to point to a string constant; the
pointer may subsequently be modified to point elsewhere.
All in all amessange is left value, while pmessage is a right value.

All in all amessange is left value, while pmessage is a right value.

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 24 / 28

Pointer Arrays; Pointers to Pointers

char *lineptr[3];
lineptr[0] = "hello";

lineptr is an array of 3 elements, each element of which is a pointer to
a char .

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 25 / 28

Two-dimensional Arrays

Declaration and initialization.
int arr[2][6] = {

{1, 2, 3, 4, 5, 6},
{1, 2, 3, 4, 5, 6}

};

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 26 / 28

Three-dimensional Arrays

Declaration and initialization.

int x[2][3][2] = {
{ {0, 1}, {2, 3}, {4, 5} },
{ {6, 7}, {8, 9}, {10, 11} }

};

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 27 / 28

Resources

https:
//www.tutorialspoint.com/cprogramming/c_arrays.htm

https://www.geeksforgeeks.org/arrays-in-c-cpp/

https://www.tutorialspoint.com/cprogramming/c_passing_
arrays_to_functions.htm

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 28 / 28

https://www.tutorialspoint.com/cprogramming/c_arrays.htm
https://www.tutorialspoint.com/cprogramming/c_arrays.htm
https://www.geeksforgeeks.org/arrays-in-c-cpp/
https://www.tutorialspoint.com/cprogramming/c_passing_arrays_to_functions.htm
https://www.tutorialspoint.com/cprogramming/c_passing_arrays_to_functions.htm

