CS 240 Programming in C

Array and Pointers

February 21, 2023

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023

Arrays are a kind of data structure that can store a fixed-size sequential
collection of elements of the same type or in simple terms - a collection of
variables of the same type.

@ It is a group of variables of similar data types referred to by a single

element.

@ Its elements are stored in a contiguous memory location.

@ The size of the array should be mentioned while declaring it.

@ Array elements are always counted from zero (0) onward.

@ Array elements can be accessed using the position of the element in
the array.

@ The array can have one or more dimensions.

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023

40 55 63 17 22 68 89 97 89

| 0 1 2 3 4 5 [7 8 | <-ArrayIndices

Array Length =9
First Index=0
Last Index=8

https:/ /www.geeksforgeeks.org/arrays-in-c-cpp/
Aaditya Tamrakar

UMass Boston CS 240

February 21, 2023

y do we need Arrays?

We can use normal variables (v1, v2, v3, ..) when we have a small number
of objects, but if we want to store a large number of instances, it becomes
difficult to manage them with normal variables. The idea of an array is to
represent many instances in one variable.

intvl = 10; A
intv2 = 20;
intv3 = 30;
intv4 = 40; >‘10‘20‘30‘40‘50‘ . ’
int v5 = 50;
Single Array to store all values
~

Multiple variables
to store each value

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023

Advantages:
@ Code Optimization: we can retrieve or sort the data efficiently.

@ Random access: We can get any data located at an index position.

Disadvantages:

@ Size Limit: We can store only the fixed size of elements in the array.
It doesn't grow its size at runtime.

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023

Declaring Arrays

Single-dimensional array:

Any C data type may be used as the type, but the array size must be an
integer constant greater than zero.

type arrayName [arraySize];
Example:

double balance[10];
int account_no[10];

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023

Initializing Arrays

balance 1000.0 2.0 3.4 7.0 50.0

// option 1

double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};
// option 2

double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};
// Option 3

double balance[5] = {[0] = 1000.0, ... [4] = 50.0};
// option 4

double balance[5];

balance[0] = 1000.0;

balance[4] = 50.0;

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023

Arrays Example

#include <stdio.h>
int main() {

int dailyTemperatures([7] = {73, 68, 71, 65, 72, 69, 75};
printf("Daily temperatures for the week:\n");
for (int i = 0; 1 < 7; i++) {

printf("Day %d: %d degrees Fahrenheit\n",
i+1, dailyTemperatures[i]);

return O;

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023

Passing Array to Function

// Formal parameters as a pointer:
void myFunction(int *param) { ... }

// Formal parameters as a sized array:
void myFunction(int param[10]) { ... }

// Formal parameters as an unsized array:
void myFunction(int param[]) { ... }

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023

Example Function with Array parameter

double getAverage(int arr[], int size) {
double avg, sum = O;
for (dint i = 0; i < size; ++i) {
sum += arr[i];
}
avg = sum / size;
return avg;

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 10 /28

Example Contd.

#include <stdio.h>
/* function declaration */
double getAverage(int arr[], int size);

int main () {
/* an int array with 5 elements */
int balance[5] = {1000, 2, 3, 17, 50};
double avg;

/* pass pointer to the array as an argument */
avg = getAverage(balance, 5) ;

/* output the returned value */
printf("Average value is: %f ", avg);
return O;

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023

@ A pointer is a variable that contains the address of a variable.
@ The unary operator & gives the address of an object.

@ The & operator only applies to objects in memory: variables and array
elements.
@ It cannot be applied to expressions, constants, or register variables.

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 12 /28

Pointers

How pointer works in C

var
int var = 10; }0/

#2008
int *ptr = &var;
*ptr = 20;

int **ptr = &ptr;
**ptr = 30;

2

2https:/ /www.geeksforgeeks.org/pointers-in-c-and-c-set-1-introduction-arithmetic-
and-array/
Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 13 /28

ptr

» 0x7fffa0757dd4

0x7fff98b459e8 <4———————— Address of pointer variable ptr

10 +1———— Value of variable var (*ptr)

Ox7fffa0757dd4 «——— Address of variable var (Stored at ptr)

1

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 14 /28

* operator

@ The unary operator * is the indirection or dereferencing operator;
@ when applied to a pointer, it accesses the object the pointer points to.
@ The declaration of a pointer variable is :

[datatype] *[variable name]
for example: int *ip;

means ip is pointer variable which reference an integer variable. i.e.
*ip in an int, and ip is an pointer which stores an address value.

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 15/28

Initialization of a pointer

There is no legal default value to a pointer variable. You have to
initiablize it before using it.
C guarantees that zero is never a valid address for data, so a pointer
of value of zero can be used to signal an abnormal event.
The symbolic constant NULL is often used in place of zero which is
defined in <stdio. h>.
A pointer has to be initialized to the address of an existing variable
before any meaningful using. For example:

int i, *ip;

ip = &i; // or int i, *ip = &i;

*ip = 3;
This is illegal

int *ip;

*ip = 3;

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023

* operator

@ The *ip in above case is just an integer variable, so it can be put into
the expression where integer can be put in. For example:

*ip = * ip + 10;

*ip += 1;

*ip << 2;

*ip < 2;

++*xip;

(xip)++; // means (*p) (xp) + 1

*ip++; // means *(ip = ip + 1)
because unary operators like *
and ++ associate right to left.

these are all legal expressions.

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023

Pointers

v[0] v[1] v[2]
10 100 200
Ox7fff9a9e7920 0x7fff9a9e7924 0x7fff9a9e7928
prr++ ptr++

Aaditya Tamrakar UMass Boston CS 240 February 21, 20

Pointer as arguments

@ Since C passes arguments to functions by value, there is no direct way
for the called function to alter a variable in the calling function.

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 19 /28

Pointer and Arrays

@ In C, there is a strong relationship between pointers and arrays.

@ In fact array variable is just one type of pointer. It can be directly
assigned to a pointer variable. For example:
int al10] = {-1, -2}, *p = a;
printf ("%d\n", *p);

@ Besides a is just storing the address of the first element of a.
int al10] = {-1}, *p = a;
printf("%d\n", a == &a[0]);
// what will be print out 7

@ And p can also be applied array subscripting like:

printf("%d\n", p[1]1); // or
printf ("%d\n", *(p+1));

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023

Pointer and Arrays

@ In evaluating ali], C actually converts it to *(a+i) immediately; the
two forms are equivalent.

@ &ali] and a+i are also identical

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023

Pointer and Arrays — One difference

@ There is one difference between an array name and a pointer that
must be kept in mind.

@ A pointer is a variable, so p=a and p++ are legal. But an array name
is not a variable; constructions like a=p and a++ are illegal.

@ Array name is equivalent to a symbolic constant address value, and it
has to be a stack address.

@ A pointer can reference to a heap address. We will see how later.

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 22/28

Pointer and Arrays

@ As formal parameters in a function definition, char s[] and char *s are
equivalent.

@ It is preferred of the latter because it says more explicitly that the
parameter is a pointer. That's why you see a lot "char *s" in library
function headers.

@ If one is sure that the elements exist, it is also possible to index
backwards in an array; p[-1], p[-2], and so on are syntactically legal,

@ But we can not refer to the elements that immediately precede p[0].

@ Of course, it is illegal to refer to objects that are not within the array
bounds.

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 23/28

Character Pointers and Functions

@ String constant.

char amessage[] = "now is the time"; /* an array */
char *pmessage = "now is the time"; /* a pointer */

e amessage is an array. lts individual characters within the array may be
changed but amessage will always refer to the same storage.

@ pmessage is a pointer, initialized to point to a string constant; the
pointer may subsequently be modified to point elsewhere.

e All in all amessange is left value, while pmessage is a right value.

@ All in all amessange is left value, while pmessage is a right value.

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 24 /28

Pointer Arrays; Pointers to Pointers

° char *lineptr[3];
lineptr[0] = "hello";

lineptr is an array of 3 elements, each element of which is a pointer to
a char .

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 25/28

Two-dimensional Arrays

@ Declaration and initialization.

int arr[2][6] = {
{1, 2’ 3, 4’ 5, 6}’
{1, 2, 3, 4, 5, 6}
}s;

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023

Three-dimensional Arrays

@ Declaration and initialization.

int x[2][3][2] = {
{ {0, 1}, {2, 3}, {4, 5} 1},
{ {6, 7, {8, 9}, {10, 11} }
};

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023

Resources

@ https:
//www.tutorialspoint.com/cprogramming/c_arrays.htm

@ https://www.geeksforgeeks.org/arrays-in-c-cpp/

@ https://www.tutorialspoint.com/cprogramming/c_passing_
arrays_to_functions.htm

Aaditya Tamrakar UMass Boston CS 240 February 21, 2023 28/28

https://www.tutorialspoint.com/cprogramming/c_arrays.htm
https://www.tutorialspoint.com/cprogramming/c_arrays.htm
https://www.geeksforgeeks.org/arrays-in-c-cpp/
https://www.tutorialspoint.com/cprogramming/c_passing_arrays_to_functions.htm
https://www.tutorialspoint.com/cprogramming/c_passing_arrays_to_functions.htm

