
Algorithm Efficiency, Big O 
Notation, and Javadoc

• Algorithm Efficiency

• Big O Notation

• Role of Data Structures

• Javadoc

• Reading:

o L&C 2.1-2.4
o http://algs4.cs.princeton.edu/14analysis

o HTML Tutorial

1



2

Algorithm Efficiency

• Let’s look at the following algorithm for initializing the 
values in an array:
final int N = 500;

int [] counts = new int[N];

for (int i=0; i<counts.length; i++)

counts[i] = 0;

• The length of time the algorithm takes to execute depends 
on the value of N



Algorithm Efficiency

• In that algorithm, we have one loop that processes all of the 
elements in the array 

• Intuitively:

o If N was half of its value, we would expect the algorithm to take 

half the time

o If N was twice its value, we would expect the algorithm to take 

twice the time

• That is true, and we say that the algorithm efficiency relative 
to N is linear

3



Algorithm Efficiency

• Let’s look at another algorithm for initializing the values in a 
different array:
final int N = 500;

int [] [] counts = new int[N][N];

for (int i=0; i<counts.length; i++)

for (int j=0; j<counts[i].length; j++)

counts[i][j] = 0;

• The length of time the algorithm takes to execute still 
depends on the value of N

4



Algorithm Efficiency

• However, in the second algorithm, we have two nested 
loops to process the elements in the two dimensional array 

• Intuitively:

o If N is half its value, we would expect the algorithm to take one 

quarter the time

o If N is twice its value, we would expect the algorithm to take 

quadruple the time

• That is true and we say that the algorithm efficiency relative 
to N is quadratic

5



Big-O Notation

• We use a shorthand mathematical notation to describe the 
efficiency of an algorithm relative to any parameter n as its 
“Order” or Big-O
o We can say that the first algorithm is O(n)

o We can say that the second algorithm is O(n2)

• For any algorithm that has a function g(n) of the parameter 
n that describes its length of time to execute, we can say 
the algorithm is O(g(n))

• We only include the fastest growing term and ignore any 
multiplying by or adding of constants

6



Eight Growth Functions

• Eight functions O(n) that occur frequently in the analysis of 
algorithms (in order of increasing rate of growth relative to 
n):
o Constant  1

o Logarithmic  log n

o Linear  n

o Log Linear  n log n

o Quadratic  n2

o Cubic  n3

o Exponential  2n

o Exhaustive Search  n!

7



8

Growth Rates Compared

n=1 n=2 n=4 n=8 n=16 n=32

1 1 1 1 1 1 1

logn 0 1 2 3 4 5

n 1 2 4 8 16 32

nlogn 0 2 8 24 64 160

n2 1 4 16 64 256 1024

n3 1 8 64 512 4096 32768

2n 2 4 16 256 65536 4294967296

n! 1 2 24 40320 20.9T Don’t ask!



Travelling Salesman Problem 
Joke

9



Big-O for a Problem

• O(g(n)) for a problem means there is some O(g(n))
algorithm that solves the problem

• Don’t assume that the specific algorithm that you are 
currently using is the best solution for the problem

• There may be other correct algorithms that grow at a 
smaller rate with increasing n

• Many times, the goal is to find an algorithm with the 
smallest possible growth rate

10



Role of Data Structures

• That brings up the topic of the structure of the data on 
which the algorithm operates

• If we are using an algorithm manually on some amount of 
data, we intuitively try to organize the data in a way that 
minimizes the number of steps that we need to take 

• Publishers offer dictionaries with the words listed in 
alphabetical order to minimize the length of time it takes us 
to look up a word

11



Role of Data Structures

• We can do the same thing for algorithms in our computer 
programs

• Example: Finding a numeric value in a list

• If we assume that the list is unordered, we must search from 
the beginning to the end 

o On average, we will search half the list

o Worst case, we will search the entire list

o Algorithm is O(n), where n is size of array

12



Role of Data Structures

• Find a match with value in an unordered list

int [] list = {7, 2, 9, 5, 6, 4};

for (int i=0; i<list.length, i++)

if (value == list[i])

statement; // found it

// didn’t find it

13



Role of Data Structures

• If we assume that the list is ordered, we can still search the 
entire list from the beginning to the end to determine if we 
have a match

• But, we do not need to search that way

• Because the values are in numerical order, we can use a 
binary search algorithm

• Like the old parlor game “Twenty Questions”
• Algorithm is O(log2n), where n is size of array

14



Role of Data Structures

• Find a match with value in an ordered list
int [] list = {2, 4, 5, 6, 7, 9};

int min = 0, max = list.length-1;

while (min <= max) {

if (value == list[(min+max)/2])

statement;  // found it

else

if (value < list[(min+max)/2])

max = (min+max)/2 - 1;

else

min = (min+max)/2 + 1;

}

statement;         // didn’t find it 15



Role of Data Structures

• The difference in the structure of the data between an 
unordered list and an ordered list can be used to reduce 
algorithm Big-O

• This is the role of data structures and why we study them

• We need to be as clever in organizing our data efficiently as 
we are in figuring out an algorithm for processing it 
efficiently

16



Role of Data Structures

• The only data structure implemented in the Java language 
itself is the array using [ ]

• All other data structures are implemented in classes – either 
our own or library classes

• To properly use a class as a data structure, we must know 
the Application Programmer’s Interface (API)

• The API for a class is documented using Javadoc comments 
in the source code that can be used to auto-create a web 
page

17



18

Javadoc

• Javadoc is a JDK tool that creates HTML user 
documentation for your classes and their methods

• In this case, user means a programmer who will be writing 
Java code using your classes

• You can access Javadoc via the JDK CLI:
> javadoc MyClass.java

• You can access Javadoc via Dr Java menu: 
Tools > Javadoc All Documents

Tools > Preview Javadoc for Current Document



19

Javadoc

• The Javadoc tool scans your source file for specialized 
multi-line style comments:
/**

* <p>HTML formatted text here</p>

*/

• Your Javadoc text is written in HTML so that it can appear 
within a standardized web page format



20

Block Tags for Classes

• At the class level, you must include these block tags with 
data (each on a separate line):
/**

*  @author Your Name

*  @version Version Number or Date

*/

• You should include HTML text describing the use of this 
class and perhaps give examples



21

Block Tags for Methods

• At the method level, you must include these block tags 
with data (each on a separate line):
/**

*  @param HTML text for 1st parameter

*  @param HTML text for 2nd parameter

*  . . .

*  @return HTML text for return value

*/

• If there are no parameters or return type, you can omit 
these Javadoc block tags



22

In Line Tags

• At any point in your Javadoc HTML text, you may use In-
Line Tags such as @link:
/**

* <p>See website {@link name url}

* for more details.</p>

*/

• In-Line tags are always included inside { }

• These { } are inside the /** and */ so the compiler
does not see them


