
1

Storage Strategies: Static
Arrays

• StackADT Interface

• ArrayStack Implementation

• ArrayStack Methods with Big-O analysis

• StackIterator Class

• StackIterator Methods

• StackIterator Summary

• Reading:

o L&C 3.6-3.8, 7.3
o http://algs4.cs.princeton.edu/13stacks

DRAFT

2

Stack Abstract Data Type

• A stack is a linear collection where the elements
are added or removed from the same end

• The processing is last in, first out (LIFO)

• The last element put on the stack is the first
element removed from the stack

• Think of a stack of cafeteria trays

3

Stack Terminology

• We push an element on a stack to add one

• We pop an element off a stack to remove one

• We can also peek at the top element without
removing it

• We can determine if a stack is empty or not and
how many elements it contains (its size)

• The StackADT interface supports the above
operations and some typical class operations such
as toString()

StackADT and Stack Classes

4

<<interface>>

Iterable<T>

+ iterator : Iterator<T>

<<interface>>

StackADT<T>

+ push(element : T) : void

+ pop() : T

+ peek() : T

+ isEmpty() : boolean

+ size() : int

+ toString() : String

<<extends>>

ArrayStack<T> LinkedStack<T>

<<implements>>

Since the Java Collections

all extend Iterable<T>, I have

added that to all my versions

of the textbook examples

Each implementing class

satisfies the ADT although

they each use a different

internal storage strategy

5

Stack Design Considerations

• Although a stack can be empty, there is no
concept for it being full. An implementation
must be designed to manage storage space

• For peek and pop operation on an empty stack,
the implementation would throw an exception.
There is no other return value that is equivalent
to “nothing to return”

• A drop-out stack is a variation of the stack
design where there is a limit to the number of
elements that are retained

6

ArrayStack Implementation

• We can use an array of elements as a stack

• The top is the index of the next available element
in the array

top integer

Type T reference Type T reference nullT [] stack

Object of type T Object of type T

T [top]

ArrayStack Methods

• An interface can’t define any constructor methods,
but any implementing class needs to have one or
more of them (maybe overloading the constructor)

• Default Contructor:
public ArrayStack()

{ // must be 1st statement

this(DEFAULT_CAPACITY); // call other constructor

} // with default capacity

• Constructor with a specified initial capacity:
public ArrayStack(int initialCapacity)

{

top = 0;

stack = (T[]) new Object[initialCapacity];

}

8

Array Stack Implementation

• push – O(1)
public void push (T element)

{

if (size() == stack.length)

expandCapacity(); // see next slide

stack [top++] = element;

}

• Because a Java array’s size cannot be changed
after instantiation, the add method may need to
allocate a larger array, copy the data to the new
array, and release the memory of the old array

ArrayStack Methods

• expandCapacity – O(n)
private void expandCapacity()

{

T[] larger = // double the array size

(T[]) new Object[2 * contents.length];

for (int i = 0; i < contents.length; i++)

larger[i] = stack[i];

stack = larger; // original array

// becomes garbage

}

10

Array Stack Implementation

• pop() – O(1)
public T pop() throws EmptyStackException

{

if (isEmpty())

throw new EmptyStackException();

T result = stack[--top];

stack[top] = null; // removes “stale” reference
return result;

}

• The “stale” reference stored in stack[top]
would prevent garbage collection on the
object when the caller sets the returned
reference value to null – ties up resources

ArrayStack Implementation

• peek() – O(1)
public T peek() throws EmptyStackException

{

if (isEmpty())

throw new EmptyStackException();

return stack[top - 1];

}

11

ArrayStack Methods

• size - O(1)
public int size()

{

return top;

}

• isEmpty – O(1)
public boolean isEmpty()

{

return top == 0;

}

13

ArrayStack Methods

• toString – O(n)
public String toString()

{

String result = “”;

for (T obj : stack) {

if (obj == null) // first null is at top

return result;

result += obj + “\n”;
}

return result; // exactly full – no nulls

}

14

ArrayStack Methods

• All Java Collections API classes implement
(indirectly) the Iterable interface and I add that
to the definition of all textbook classes

• iterator – O(1)
public Iterator<T> iterator()

{

return new StackIterator<T>();

}

• We need to study the StackIterator class to
understand how to implement an Iterator

15

StackIterator Class

• The iterator method of the ArrayStack class
instantiates and returns a reference to a new
StackIterator object to its caller

• If an iterator class is very closely related to its
collection class, it is a good candidate for
implementation as an inner class

• As an inner class, the StackIterator code can
access the stack and top variables of the

instance of the outer class that instantiated it

16

StackIterator Definition/Attributes

• Class Definition/Attribute Declarations
(implemented as an inner class)
private class StackIterator<T>

implements Iterator<T>

{

private int current;

• Constructor:
public StackIterator()

{

current = top; // start at top for LIFO

}

17

StackIterator Methods

• hasNext – O(1)
public boolean hasNext()

{

return current > 0;

}

• next – O(1)
public T next()

{

if (!hasNext())

throw new NoSuchElementException();

return stack[--current]; // outer class array

}

18

StackIterator Methods

• remove – O(1)

• We may or may not implement real code for the
remove method, but there is no return value that
we can use to indicate that it is not implemented

• If we don’t implement it, we may indicate that it is
not implemented by throwing an exception
public void remove() throws

UnsupportedOperationException

{

throw new UnsupportedOperationException();

}

19

StackIterator Methods

• If we do implement the remove method, notice
that we don’t specify the element that is to be
removed and we do not return a reference to the
element being removed

• It is assumed that the calling code has been
iterating on condition hasNext() and calling
next() and already has a reference

• The last element returned by next() is the
element that will be removed

20

StackIterator Method Analysis

• Each of the StackIterator methods is O(1)

• However, they are usually called inside an
external while loop or “for-each” loop

• Hence, the process of “iterating” through a
collection using an Iterator is O(n) where n is
the number of objects in the collection

21

ArrayListIterator Class in
Textbook

• The textbook’s iterator classes detect any
modification to the array and cause the iteration
process to “fast-fail” with an exception

• The add and remove methods of the outer class
update a variable: modCount

• The iterator’s constructor copies that value
• If the value of modCount changes during the

iteration, the iterator code throws an exception

• I have not included that in my example code, but it
is included in the Java Collections classes

