<u>Queues</u>

- Queue Concept
- Queue Design Considerations
- Queues in Java Collections APIs
- Queue Applications
- Reading L&C 5.1-5.8, 9.3

Queue Abstract Data Type

- A *queue* is a linear collection where the elements are added to one end and removed from the other end
- The processing is *first in, first out (FIFO)*
- The first element put on the queue is the first element removed from the queue
- Think of a line of people waiting for a bus (The British call that "queuing up")

<u>A Conceptual View of a Queue</u>

<u>Queue Terminology</u>

- We *enqueue* an element on a queue to add one
- We *dequeue* an element off a queue to remove one
- We can also examine the *first* element without removing it
- We can determine if a queue is *empty* or not and how many elements it contains (its *size*)
- The L&C QueueADT interface supports the above operations and some typical class operations such as toString()

Queue Design Considerations

- Although a queue can be empty, there is no concept for it being full. An implementation must be designed to manage storage space
- For first and dequeue operation on an empty queue, this implementation will throw an exception
- Other implementations could return a value null that is equivalent to "nothing to return"

The java.util.Queue Interface

- The java.util.Queue interface is in the Java Collections API (extends Collection)
- However, it is only an interface and you must use an implementing class
- LinkedList is the most commonly used implementing class
- For a queue of *type* objects:

Queue<type> myQueue = new LinkedList<type>();

The java.util.Queue Interface

- The names of the methods are different
- Enqueue is done using:

boolean offer(T element) // returns false if full

• Dequeue is done using either:

T poll() // returns null value if empty

T remove() // throws an exception if empty

• Peek is done using either:

T peek() // returns null value if empty

T element() // throws an exception if empty

Applications for a Queue

- A queue can be used as an underlying mechanism for many common applications
 - $_{\odot}$ Cycling through a set of elements in order
 - Simulation of client-server operations
 - $_{\circ}$ Radix Sort

 Scheduling processes in an operating system such as printer queues

Cycling through Code Keys

- The Caesar cipher is simple letter shifting
- Each letter is treated as its number 0-25 in the alphabet and each letter is encoded as: cipher value = (letter value + constant) % 26
- The message is decoded letter by letter: letter value = (cipher value – constant) % 26 if (letter value < 0) letter value += 26
- Using the constant 7, the word "queue" would be coded as "xblbl"
- Note: the word's "pattern" is recognizable

Cycling through Code Keys

- The Caesar cipher is easy to solve because there are only 26 possible "keys" to try
- It can be made harder by cycling through a key set of values such as 3, 1, 7, 4, 2, 5
- We put that sequence of numbers in a queue
- As we encode each letter, we dequeue a number for the constant and re-enqueue it - cycling through the entire key set as many times as needed for the message length

Cycling through Code Keys

- Using that queue of numbers as the constant values, the word "queue" becomes "tvlyg"
- Note: the word's "pattern" is not recognizable
- If we are encoding a message containing the entire Unicode character set, we can omit the modulo 26 operator as in the text book code
- See L&C, Listing 5.1

- See L&C Listing 5.2 and 5.3
- The simulation in this example sets up a queue with each customer arriving at regular 15 second intervals
- This is not a very meaningful analysis because it doesn't take into account the typical variations in arrival rates
- E.G. One customer every 15 seconds could mean 8 customers arriving at one time and then 2 minutes with no arriving customers

• Textbook code always gives same values:

cashiers time

- 1 5317
- 2 2325
- 3 1332
- 4 840
- 5 547
- 6 355
- 7 219
- 8 120
- 9 120

 A more sophisticated simulation would use probability distributions for the arrival rate and for the processing time

 With an average serving time that sets a maximum capacity for handling customers based on the number of servers

 And an average arrival time with parameters for the distribution of arrivals over time

 A statistical analysis is more important for an ice cream shop next to a movie theater (during a movie versus as a movie lets out)

 Poisson Distribution is commonly used for estimating arrival times in simulations

• Replacement for textbook code in listing 5.3:

/** load customer queue

```
improved to use random Poisson arrival times*/
Poisson myDist = new Poisson(lambda);
for (int count=0; count < NUM_INTERVALS / lambda; count++)
{
    int numberOfCustomers = myDist.getValue();
    for (int i = 0; i < numberOfCustomers; i++)
        customerQueue.offer(new Customer(count*15*lambda));
}</pre>
```

 Introduces random arrival times based on the Poisson distribution for each time interval

 For a Markov/Markov/1 (M/M/1) process (one queue and one server), the expected waiting time can be calculated in closed form

Waiting Time = Service Time / (1 – load/capacity)

• This produces a graph of waiting time versus load/capacity with infinite waiting time at load equal to 100% or more of capacity

Waiting Time versus Load / Capacity

Radix Sort - IBM Card Sorter

111	and I	Ras	dar é	aryi.	1	: SD-	Cair		ISN H	II.	I.	Carda			11	a chi	Cars	IR or	dat .c	IL I	
	1	1	н		- 11		١.	ι.		1.1	11			1		81.				н	1
	1361	11	1114	100	230		10	11	014	16.03	100	goer:	111	180	1831	int	111	100	111		1
111101	Ú90		101	111	000	11	1111	nin	111	(IP	111	1111	111	111	111	letit	10	ri n	1111	1111	ïi
E	112	210	in	-	1000	222	110	111	\$82	1123	111		111	181	222	(22)	112	1223	RE H	2221	18
111811		111	1111	1111	1131	118	111	133	111	iii)	181	11111	113	111	111	1 2.8	111	1111	1110	111	11
			1111	444		Bet.	1111		141			-	1144		-		118			-	44
	111	611	18.55		1350	555	1.1		815		555	55858	1998	55.01	1303	1555	185	53115	I.S.B.S		55
							fie at					IXEL									
															177		111				
	1		21									100					100		100	100	1
																	- 8.0				2
112210.	12/27	725	0,0,00		12.00	335	12.51	19.53	25.8	2335	555	19113	1999	221	332	1995	22	895	09.96	2825	2

<u>Radix Sort - Algorithm</u>

- See L&C Listing 9.3
- Like the old IBM punched card sorters

2. Empty Each Queue in Order and Add to List