
1

Queues (Continued)

• Queue ADT

• Linked queue implementation

• Array queue implementation

• Circular array queue implementation

• Deque

• Reading L&C 5.1-5.8, 9.3

DRAFT

QueueADT and Queue Classes

2

<<interface>>

Iterable<T>

+ iterator : Iterator<T>

<<interface>>

QueueADT<T>

+ enqueue (element : T) : void

+ dequeue () : T

+ first() : T

+ isEmpty() : boolean

+ size() : int

+ toString() : String

<<extends>>

CircularArrayQueue<T> LinkedQueue<T>

<<implements>>

Since the Java Collections

all extend Iterable<T>, I have

added that to all my versions

of the textbook examples

Each implementing class

satisfies the ADT although

they each use a different

internal data structure

3

Linked Queue Implementation
• We can use the same LinearNode class that we

used for LinkedStack implementation

• We use attribute names “front” and “rear” to
have a meaning consistent with a queue

Object of type T

front

LinearNode next;

T element;

Object of type T

LinearNode next;

T element;

null

count integer

Object of type T

LinearNode next;

T element;

rear

4

Linked Queue Implementation

• enqueue – O(1)
public void enqueue (T element)

{

LinearNode<T> node = new LinearNode<T>(element);

if (isEmpty())

front = node;

else

rear.setNext(node);

rear = node;

count++;

}

• Note the difference between the enqueue
method and the stack push method

5

Linked Queue Implementation

• dequeue – O(1)
public T dequeue () throws EmptyQueueException

{

if (isEmpty()) throw new EmptyQueueException();

T result = front.getElement();

front = front.getNext(); // may create garbage

if (--count == 0)

rear = null; // finishes creating garbage

return result;

}

• Note the difference between the dequeue
method and the stack pop method

6

Array Queue Implementation

• We can use an array of elements as a queue

• The front is implicitly index 0 and rear is the
index of next available element in the array

• Variable “rear” is also used for count

Object of type T Object of type T nullT [] queue

rear integer

7

Array Queue Implementation

• enqueue – O(1)
public void enqueue (T element)

{

if (size() == queue.length)

expandCapacity();

queue[rear++] = element;

}

• expandCapacity is similar to private helper
method used in ArraySet and Stack classes

8

Array Queue Implementation
• dequeue() – O(n)

public T dequeue() throws EmptyQueueException

{

if (isEmpty())

throw new EmptyStackException();

T result = queue[0];

rear--;

for (int scan = 0; scan < rear; scan++)

queue[scan] = queue[scan + 1];

queue[rear] = null; // stale alias

return result;

}

9

Array Queue Implementation

• Notice that the dequeue is O(n) due to the
shifting of the elements in the array queue after
the 0th element has been copied out

• This introduces a potential performance
problem that we would like to avoid

• Using the 0th element of the array as the rear of
the queue doesn’t solve the problem – just
moves it to the enqueue operation

• With a better design, we can avoid it

10

Circular Array Queue
Implementation

• This design eliminates the shifting of the
elements as part of the dequeue operation

• Commonly called circular buffering
• We keep an integer for both the front and rear

of the queue in the array and never shift the
elements in the array

• When we increment either front or rear to the
length of the array, we do not expand the
capacity. We set them back to zero to reuse
the lower elements in the array

11

Circular Array Queue
Implementation

0
1

2
N-2

N-1

3

4

5
6

front 3

rear 7

count 4

7

12

Circular Array Queue
Implementation

0
1

2
N-2

N-1

3

4

5
6

front

2rear

N-2

count 4

7

13

Circular Array Queue
Implementation

• Method enqueue can not use:
rear++;

• Method dequeue can not use:
front++;

• To increment rear, enqueue must use:
rear = (rear + 1) % queue.length;

• To increment front, dequeue must use:
front = (front + 1) % queue.length;

14

Circular Array Queue
Implementation

• When the front catches up to the rear (a snake
eating its own tail?), our code must expand the
capacity of the array (replacing the original
array with a larger one)

• When our code expands the capacity, it must
cycle through the original array from front
index to rear index value as it copies from the
smaller array to the larger array

• Then, it sets new values for front and rear

Queue Class Iterators

• Again, we need to provide an iterator method
and an Iterator class (best implemented as an
inner class)

• We want the iterator to provide the elements in
the order of the queue from front to rear

• This would be:

o For a LinkedQueue: The same order as for a
LinkedStack’s Iterator (Code not shown here)

o For a CircularArrayQueue: Opposite of the order as
for the ArrayStack’s Iterator classes

15

16

ArrayIterator Class

• The iterator method for each Queue class
instantiates and returns a reference to a new
ArrayIterator object to its caller

• Any iterator class is closely related to its collection
class so it is a good candidate for implementation
as an inner class

• As an inner class, the ArrayIterator code can
access the array and front/rear variables of the
instance of the outer class that instantiated it

17

ArrayIterator Definition/Attributes

• Class Definition/Attribute Declarations
(implemented as an inner class)
private class ArrayIterator<T>

implements Iterator<T>

{

private int current;

• Constructor:
public ArrayIterator()

{

current = front; // start at front for FIFO

}

18

ArrayIterator Methods

• hasNext – O(1)
public boolean hasNext()

{

return current != rear; // outer class variable

}

• next – O(1)
public T next()

{

if (!hasNext())

throw new NoSuchElementException();

T result = queue[current]; // outer class array

current = (current + 1) % queue.length;

return result;

}

Deque

• A Deque (pronounced like “deck”) is a data
structure that is a double ended queue

• It can be used as either a stack or a queue
depending on the methods your code uses

• Look at the Deque class in the Java APIs

• Note the name of each method and what it does
to use a Deque data structure correctly (the
names are not the traditional ones)

19

Deque

• If we use a Deque for our traceback stack instead
of a Stack, we could add into it as a stack and
then remove from it as a queue

• Then we wouldn’t need to use another stack to
reverse the order of the elements in order to
print them from first to last

• If you want, try a Deque instead of a Stack or
Queue in one of our labs or projects

20

