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Recursion (Continued)

• Tail Recursion versus Iterative Looping

• Using Recursion

o Printing numbers in any base

o Computing Greatest Common Denominator

o Towers of Hanoi

• Analyzing Recursive Algorithms

• Misusing Recursion

o Computing Fibonacci numbers

• The Four Fundamental Rules of Recursion

• Reading L&C 7.3 – 7.4

DRAFT
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Tail Recursion

• If the last action performed by a recursive 
method is a recursive call, the method is said 
to have tail recursion

• It is easy to transform a method with tail 
recursion to an iterative method (a loop)

• Some compilers actually detect a method that 
has tail recursion and generate code for an 
iteration to improve the performance
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Tail Recursion
• Here is a method with tail recursion:

public void countdown(int integer)

{

if (integer >= 1) {

System.out.println(integer);

countdown(integer – 1);

}

}

• Here is the equivalent iterative method:
public void countdown(int integer)

{

while(integer >=1) {

System.out.println(integer);

integer--;

}

}
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Tail Recursion

• As you can see, conversion from tail 
recursion to a loop is straightforward

• Change the if statement that detects 
the base case to a while statement with 
the same condition

• Change recursive call with a modified 
parameter value to a statement that just 
modifies the parameter value

• Leave the rest of the body the same



Tail Recursion

• Let’s look at the factorial method again
• Does it have tail recursion?

private int factorial(int n)

{

return n == 1? 1 : n * factorial(n – 1);

}

• Although the recursive call is in the last line of 
the method, the last operation is the 
multiplication of the return value by n

• Therefore, this is not tail recursion

5



6

Printing an Integer in any Base

• Hard to produce digits in left to right order

o Must generate the rightmost digit first

o Must print the leftmost digit first

• Basis for recursion

Least significant digit = n % base

Rest of digits = n  /  base

• Base case:  When n < base, no further 
recursion is needed
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Printing an Integer in any Base

• Table of digits for bases up to 16
private final String DIGIT_TABLE = 

"0123456789abcdef";

• Recursive method
private void printInt(int n, int base)

{

if (n >= base)

printInt( n/base, base );

System.out.print( DIGIT_TABLE.charAt(n % base));

}
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Computing GCD of A and B

• Basis for recursion

GCD (a, 0) = a                                (base case)

GCD (a, b) = GCD (b, a mod b) (recursion)

• Recursive method
private int gcd(int a, int b)

{

if (b != 0)

return gcd(b, a % b);   // recursion

return a;                   // base case

}



Computing GCD of A and B
• Does the gcd method have tail recursion?

• Yes, no calculation is done on the return value 
from the recursive call

• Equivalent iterative method
private int gcd(int a, int b)   

{

while (b != 0)  {

int dummy = b;

b = a % b;

a = dummy;

}

return a;               

} 9
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Towers of Hanoi

• The Towers of Hanoi puzzle was invented by a 
French mathematician, Edouard Lucas in 1883.  
(See “Ancient Folklore”)

• There are three upright pegs and a set of disks 
with holes to fit over the pegs

• Each disk has a different diameter and a disk 
can only be put on top of a larger disk

• Must move a pile of N disks from a starting 
tower to an ending tower one at a time



Towers of Hanoi

• This bit of ancient folklore was invented by De Parville in 1884.

• ``In the great temple at Benares, says he, beneath the dome which marks the centre of the world, 
rests a brass plate in which are fixed three diamond needles, each a cubit high and as thick as the 
body of a bee. On one of these needles, at the creation, God placed sixty-four discs of pure gold, the 
largest disc resting on the brass plate, and the others getting smaller and smaller up to the top one. 
This is the Tower of Bramah. Day and night unceasingly the priests transfer the discs from one 
diamond needle to another according to the fixed and immutable laws of Bramah, which require 
that the priest on duty must not move more than one disc at a time and that he must place this disc 
on a needle so that there is no smaller disc below it. When the sixty-four discs shall have been thus 
transferred from the needle on which at the creation God placed them to one of the other needles, 
tower, temple, and Brahmins alike will crumble into dust, and with a thunderclap the world will 
vanish.'' (W W R Ball, MATHEMATICAL RECREATIONS AND ESSAYS, p. 304)
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Towers of Hanoi

• While solving the puzzle the rules are:

o We can only move one disk at a time

o We cannot place a larger disk on top of a smaller 
disk

o All disks must be on some peg except for the one 
in transit

• See example for three disks
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Towers of Hanoi

Original Configuration

After First Move

After Second Move

After Third Move

After Fourth Move

After Fifth Move

After Sixth Move

After Last Move
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Towers of Hanoi
• The recursive solution is based on:

Move one disk from start to end (base case)

Move a tower of N-1 disks out of the way (recursion)
private void moveTower

(int numDisks, int start, int end, int temp)

{

if (numDisks == 1)

moveOneDisk (start, end);

else {

moveTower(numDisks-1, start, temp, end);

moveOneDisk(start, end);

moveTower(numDisks-1, temp, end, start);

}

}



Towers of Hanoi – Iterative 
Solution

• A solution discovered in 1980 by Peter Buneman and Leon Levy

• Assume that the n disks start on peg A and must end up on peg C, 
after using peg B as the spare peg

o Move the smallest disk from its current peg to the next peg in 
clockwise order (or counter-clockwise -- always the same direction) 

o Move any other disk  (There's only one such legal move)

• This is how the solution works: go clockwise with the smallest disk, 
make a legal move with another disk, go clockwise with the smallest 
disk, make a legal move with another disk, and so on.

• Eventually n-1 disks will have magically been transferred to peg B 
using peg C as the spare; 

• Then the largest disk goes to peg C; then those n-1 disks eventually 
get to peg C using peg B as the spare. 
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Analyzing Recursive Algorithms

• To determine the order of a recursive algorithm:

o Determine the order of the recursion (the number of 
times the recursive definition is followed)

o Multiply by the order of the body

• For n!, the order of the recursion is O(n) and the 
order of the body is O(1) - a single multiplication 
- so the algorithm is O(n)
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Analyzing Recursive Algorithms

• Some common recursive algorithms operate on 
half as much data as the previous call

• The order of the recursion is O(log n)

o For n = 16, the recursions operate on 16, 8, 4, 2, and 
1 to reach the base case

o There are 5 recursions which is (log n) + 1

• If the order of the body is O(1), the order of the 
algorithm is O(log n)

• If the order of the body is O(n), the order of the 
algorithm is O(n log n)
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Analyzing Recursive Algorithms

• The towers of Hanoi algorithm is analyzed based on the 
number of disks to be moved

o Each call to moveTower results in one disk being moved

o However, each call results in two recursive calls to moveTower

o Each recursion operates on only 1 less disk than the number of 
disks for the previous call

• Hence the order is O(2n)
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Analyzing Recursive Algorithms

• For the towers of Hanoi with 64 disks and one 
move being made every second, the solution 
will take over 584 billion years

• However, this is not the fault of a recursive 
algorithm being used

• The problem itself is that time consuming 
regardless of how it is solved

• Misusing recursion means that a recursive 
solution is unnecessarily worse than a loop
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Misusing Recursion

• Some algorithms are stated in a recursive 
manner, but they are not good candidates for 
implementation as a recursive program

• Calculation of the sequence of Fibonacci 
numbers Fn (which have many interesting 
mathematical properties) can be stated as:

F0 = 0 (one base case)

F1 = 1 (another base case)

Fn = F(n-1) + F (n-2) (the recursion)
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Misusing Recursion

• We can program this calculation as follows:
public int fib(int n)

{

if (n <= 1)

return n;

else

return fib(n – 1) + fib(n – 2);

}

• Why is this not a good idea?
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Misusing Recursion

• If we trace the execution of this recursive 
solution, we find that we are repeating the 
calculation for many instances of the series

F5

F4 F3

F3 F2 F2 F1

F1F1 F0F0F2

F1 F0

F1
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Misusing Recursion

• Note that in calculating F5, our code is calculating F3 twice, 
F2 three times, F1 five times, and F0 three times

• These duplicate calculations get worse as the number N 
increases

• The order of the increase of time required with the value of 
N is exponential O(2N)

• For N = 40, the total number of recursive calls is more than 
300,000,000



24

Misusing Recursion
• This iterative solution (for N >= 2) uses a form of 

“dynamic programming” and is O(n) :
public int fibonacci(int n) 

{

int fN = 0; int fNminus2 = 0, fNminus1 = 1;

for (int i = 2; i <= n; i++)  

{

fN = fNminus1 + fNminus2; 

fNminus2 = fNminus1; 

fNminus1 = fN; 

}

return fN;

}



Dynamic Programming

• Sometimes also called “dynamic optimization”
• This technique breaks down a problem into 

multiple sub-problems and stores each solution so 
that it doesn’t need to be computed more than 
one time

• In the redesigned Fibonacci solution, we saved the 
computed values of the Fibonacci numbers for the 
two previous values of N to be reused
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Four Fundamental Rules of 
Recursion

• Base Case: Always have at least one case that can be solved 
without recursion

• Make Progress: Any recursive call must make progress 
toward a base case

• You gotta believe: Always assume that the recursive call 
works

• Compound Interest: Never duplicate work by solving the 
same instance of a problem in separate recursive calls

Ref: Mark Allen Weiss, Data Structures & Problem Solving using Java, Chapter 7


