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Trees

• Tree nomenclature

• Implementation strategies

• Traversals

o Depth-first

o Breadth-first

• Implementing binary trees

• Reading: L&C 10.1 – 10.7
DRAFT
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Tree Nomenclature

• A tree is a non-linear structure in which elements are organized 
into a hierarchy

• A tree has levels of nodes connected by edges

• Each node is at a level in the tree

• The root node is the one node at the top level

• Nodes are children of nodes at higher levels

• Nodes with the same parent node are siblings

• A leaf is a node with no children
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Tree Nomenclature

• A path exists from the root to any node or leaf 

• A node is the ancestor of another node if it is on the path 
between the root and the other node

• A node that can be reached along a path away from the root is a 
descendant

• The level of a node is the length of the path (number of edges) 
from the root to the node

• The height of a tree is the length of the longest path from the 
root to a leaf
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Tree Nomenclature

• A tree is considered to be balanced if all of the leaves are at the 
same level or within one level of each other 

• A tree is considered to be complete if it is balanced and all the 
leaves on the bottom level are on the left

• A tree is considered full if all leaves of the tree are at the same 
level and every node is either a leaf or has exactly n children

• The height of a balanced, complete, or full tree that contains N 
elements is logn N
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Tree Nomenclature

• The order of a tree is an important characteristic 

• It is based on the maximum number of children a node can have

o There is no limit in a general tree

o An n-ary tree has a limit of n children per node

o A binary tree has exactly two children per node

• The maze in Project 4 will be a “tri-nary” tree
• Binary trees are often useful, so we’ll concentrate on them in the 

rest of this course
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Implementation Strategies

• The computational strategy for an array

• In a binary tree, for any element stored in the array in position n, 
we consider:

o its left child to be stored in position:   2*n + 1

o its right child to be stored in position: 2*(n + 1)

• This is a simple numerical index mapping and can be managed 
by adding capacity as needed

• Its disadvantage is that it may waste memory

• If the tree is not complete or nearly complete, the array may 
have many empty elements
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Implementation Strategies

• The simulated link strategy for an array

• In a binary tree, each element of the array is an object with a 
reference to a data element and an int index for each of its two 
children

• A new child is always added to the end of the contiguous 
storage area in the array to avoid wasting space

• However, there is increased overhead to remove an element 
from the array (to shift the remaining elements and alter index 
values as required)
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Implementation Strategies
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Implementation Strategies

• For a binary tree, the linked strategy uses a node class 
containing a reference to the data and a left and a right 
reference to two child nodes
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Traversals

• Types of traversals

o Pre-order (Depth first)

▪ Visit node, traverse left child, traverse right child

o In-order (Depth first)

▪ Traverse left child, visit node, traverse right child

o Post-Order (Depth first)

▪ Traverse left child, traverse right child, visit node

o Level-order (Breadth first)

▪ Visit all the nodes at each level, one level at a time
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Traversals
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Tree

Pre-order traversal would give:

A, B, D, E, C

In-order traversal would give:

D, B, E, A, C

Post-order traversal would give:

D, E, B, C, A

Level-order Traversal would give:

A, B, C, D, E



Level-order Traversal

• A possible algorithm for level-order traversal

Create a queue called nodes

Create an unordered list called results

Enqueue a reference to the root node onto the nodes queue

While the nodes queue is not empty

Dequeue the first element

If it is not null

add it to the rear of the results list

Enqueue the children of the element on the nodes queue

Else

Add null to the rear of the results list

Return an iterator for the results list
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Implementing Binary Trees

• A possible interface definition is provided that can be used 
on any binary tree regardless of the purpose of the tree

• Note: There is no method for adding an element or 
removing an element yet

• Until we know more about the purpose of the tree, those 
operations can’t be defined

• We will use a less general (child) interface for a binary 
search tree and a heap later
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Implementing Binary Trees
<<interface>>

BinaryTreeADT<T>

+ removeLeftSubtree( ) : void

+ removeRightSubtree( ) : void

+ removeAllElements( ) : void

+ isEmpty( ) : boolean

+ size( ) : int

+ contains( ) : boolean

+ find( ) : T

+ toString( ) : String

+ iteratorInOrder( ) : Iterator<T>

+ iteratorPreOrder( ) : Iterator<T>

+ iteratorPostOrder( ) : Iterator<T>

+ iteratorLevelOrder( ) : Iterator<T>

Note: toString is missing in L&C Fig 9.9 

LinkedBinaryTree<T>

# count : int

# root : BinaryTreeNode

{Three constructors

as shown in text}
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Implementing Binary Trees

• Here we use a BinaryTreeNode in a linked strategy for 
our implementation

• Note: L&C code allows “package” access to the 
BinaryTreeNode attributes - not accessor methods as 
would be better O-O practice

BinaryTreeNode<T>

# element : T

# left : BinaryTreeNode

# right : BinaryTreeNode

+ BinaryTreeNode (obj : T)

+ numChildren ( ) : int



Implementing Binary Trees

• Three constructors for convenience:

o One to instantiate an empty tree

o One to instantiate a tree with one root node

o One to instantiate a tree with a root node and left and right child 
nodes from existing trees

• In normal methods for processing a binary tree, it is useful 
to use recursive algorithms
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Implementing Binary Trees

• BinaryTreeNode method to get number of children
public int numChildren()

{

int children = 0;

if (left != null)

children = 1 + left.numChildren();

if (right != null)

children += 1 + right.numChildren();

return children;

}

• Note: Usual strategy of keeping a count attribute doesn’t work 
well since if we add a child to a node, we need to go back to all 
parent nodes to update the count attribute in each of them
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Implementing Binary Trees

• LinkedBinaryTree remove left sub-tree method
public void removeLeftSubtree()

{ // Note: uses methods instead of package access

if (root.getLeft() != null)

count = count – root.getLeft().numChildren() – 1;

root.setLeft(null);    // creates garbage!

}

• The Java garbage collection approach saves coding effort here

• In languages like C++, the last line would be a “memory leak”
• This method would be much more complex to implement -

needing to release objects’ memory
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Implementing Binary Trees

• LinkedBinaryTree method to find target

private BinaryTreeNode<T> findagain (T target, 
BinaryTreeNode<T> next)

{ // Note: uses methods instead of package access

if (next == null)

return null;

if (next.getElement().equals(target))

return next;

BinaryTreeNode<T> temp = findagain(target, 
next.getLeft());

if (temp == null)

temp = findagain(target, next.getRight());

return temp;

}
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Implementing Binary Trees

• LinkedBinaryTree method iteratorInOrder()
public Iterator<T> iteratorInOrder() {

ArrayList<T> list = new ArrayList<T>();

inOrder (root, list);

return list.iterator();

}

private void inorder(BinaryTreeNode<T> node, 
ArrayList<T> list)

{  // Note: uses methods instead of package access

if (node != null) {

inorder(node.getLeft(), list);

list.add(node.getElement());

inorder(node.getRight(), list);

}
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