
Binary Search Trees (Continued)

• Study Project 3 Solution

• Balanced Binary Search Trees

• Balancing Operations

• Reading: L&C 11.1 – 11.4
http://algs4.cs.princeton.edu/33balanced

1

DRAFT



Balanced Binary Search Trees

• The balance of a binary search tree is important for 
obtaining its efficiency

• If we add 3, 5, 9, 12, 18, and 20 to a binary search tree, we 
get a degenerate tree

• This is less efficient than a singly linked list because our 
code needs to check the null left pointer at each level while 
traversing it

• Operations are O(n) instead of O(log n)

• We want our binary search trees balanced

2



Balanced Binary Search Trees

• Degenerate tree for a binary search tree

3

3

5

9

12

18

20



Balancing Operations

• Brute force balancing methods work but are unnecessarily 
time consuming

• We could use an in-order traversal of the tree and move 
everything out to an array

• Then, we could use a recursive method to insert the middle 
element of the array as the root and subdivide the array 
into two halves

• Eventually, we will rebuild a balanced tree

4



Balancing Operations

• We prefer to use balancing operations after each add or 
remove element operation

• Semantics of balancing operations

o Right rotation

o Left rotation

o Rightleft rotation

o Leftright rotation

5



Balancing Operations

• Semantics of Right Rotation

A. Make the left child of the root the new root

B. Make former root the right child of the new root

C. Make right child of the former left child of the former root the 
new left child of the former root

6

13

157

105

3

7

135

10
3 15

Initial

Tree
Step A Step B Step C

7

135

103 15
10

7

135

3 15



Balancing Operations

• Semantics of Left Rotation

A. Make the right child of the root the new root

B. Make former root the left child of the new root

C. Make left child of the former right child of the former root the 
new right child of the former root

7

5

103

7 13

15
Initial

Tree

5

10

3
7

13

15

Step A

5

10

3
7

13

15

Step B

5

10

3 7

13

15

Step C



Balancing Operations

• Semantics of Rightleft Rotation

A. Right rotation around right child of root

B. Left rotation around root

8

5

133

10 15

7

Initial

Tree

5

103

7 13

15

After Right

Rotation

10

135

7 153

After Left

Rotation



Balancing Operations

• Semantics of Leftright Rotation

A. Left rotation around left child of root

B. Right rotation around root

9

13

155

73

10

Initial

Tree

13

157

105

3

After Left

Rotation

7

135

103 15

After Right

Rotation



Introduction to Project 4

• In the next lecture we will cover the AVL strategy for 
determining which rotation to perform on a binary search 
tree after an add or remove operation

• In project 4, I provide you a framework for an AVL tree 
implementation

• However, it is missing a few key pieces:

o Determining which of the rotations to perform

o Updating of the balance factors after a rotation



Introduction to Project 4

• You need to add code for the missing pieces

• I provide junit test cases to determine if your code works 
correctly for samples of all of the different situations that 
can occur

• Your code must pass the test cases


