
1

Variables, Constants, and Data Types

• Primitive Data Types

• Variables, Initialization, and Assignment

• Constants

• Characters

• Strings

• Reading for this class: L&L, 2.1-2.3, App C

2

Types of Data
• In Java, you will be dealing mainly – nigh

exclusively – with two types of program
data:

• Primitive types:

–The most basic forms that data in a Java
program can take

• Object types:

–Conglomerations of other data types, both
primitive and object types

3

Primitive Data

• Java has 8 primitive data types

• Four integer types:
–byte, short, int, long

• Two decimal types:
–float, double

• Single characters:
–char

• True/false (or "boolean") values:
–boolean

• For numeric types, we will primarily use the
int and the double types.

4

Numeric Primitive Data

• The numeric types differ in size and,
therefore, the values they can store:

Type

byte

short

int

long

float

double

Storage

8 bits
16 bits
32 bits
64 bits

32 bits
64 bits

Min Value

-128
-32,768
-2,147,483,648
< -9 x 1018

+/- 3.4 x 1038 with 7 significant digits
+/- 1.7 x 10308 with 15 significant digits

Max Value

127
32,767
2,147,483,647
> 9 x 1018

Numeric Primitive Data - Visually

byte

short

int

long

float

double

8 bits

8 bits

8 bits

8 bits

8 bits

8 bits

8 bits

8 bits

8 bits

8 bits

8 bits

8 bits

8 bits

8 bits

8 bits

8 bits

8 bits

8 bits

8 bits

8 bits 8 bits 8 bits 8 bits

8 bits

8 bits

8 bits

8 bits

8 bits

8 bits

8 bits

8 bits8 bits 8 bits 8 bits 8 bits

6

Boolean Primitive Data

• A boolean value represents a true or false

condition

• true and false are reserved words and the

only valid values for a boolean type

boolean done = false;

• A boolean variable can represent any two

states such as a light bulb being on or off

boolean isOn = true;

7

Variable Declaration
• A variable is a name for a location in

memory

• A variable must be declared by specifying
its name and the type of information that it
will hold

• Multiple variables of the same type can be
created in one declaration:

int total;

int count, temp, result; boolean done, on;

data type variable name

8

Variable Initialization

• A variable can be initialized (given a value for
the first time) at the time of declaration or later

• When a variable is referenced in a program, its
current value is used

• See PianoKeys.java (page 66-67)

• Prints as:
A piano has 88 keys.

int sum = 0; OR int sum;

int base = 32, max = 149; sum = 0;

int keys = 88;

System.out.println(“A piano has ” + keys + “ keys.”);

9

Constants

• A constant is an identifier that is similar to a variable
except that it holds the same value during its entire
existence

• As the name implies, it is constant, not variable

• In Java, we use the reserved word final in the
declaration of a constant

final int MIN_HEIGHT = 69; OR

final int MIN_HEIGHT; MIN_HEIGHT = 69;

• Any subsequent assignment statement with MIN_HEIGHT
on the left of the = operator will be flagged as an error

10

Constants

• Constants are useful for three important reasons

• First, they give meaning to otherwise unclear literal values

– For example, NUM_STATES is more meaningfult than the literal 50
– what if the country gets a 51st state?

• Second, they facilitate program maintenance

– If a constant is used in multiple places and you need to change its
value later, its value needs to be updated in only one place

– Rather than having to find and change it in multiple places!

• Third, they formally show that a value should not change,
avoiding inadvertent errors by other programmers

11

Characters

• A char variable stores a single character

• In Java, a character takes 2 bytes

• Character literals are delimited by single quotes:

'a' 'X' '7' '$' ',' '\n'

• Example declarations:

char topGrade = 'A';

char terminator = ';', separator = ' ';

12

Character Sets

• A character set is an ordered list of characters,
with each character corresponding to a unique
number

• A char variable in Java can store any character
from the Unicode character set

• The Unicode character set uses sixteen bits per
character, allowing for 65,536 (2^16) unique
characters

• It is an international character set, containing
symbols and characters from many world
languages

13

Characters

• The ASCII character set is older and smaller than
Unicode, but is still quite popular (in C programs)

• The ASCII characters are a subset of the Unicode
character set, including:

uppercase letters

lowercase letters

punctuation

digits

special symbols

control characters

A, B, C, …
a, b, c, …
period, semi-colon, …
0, 1, 2, …
&, |, \, …
carriage return, tab, ...

14

Value Assignment

• An assignment statement gives the variable an actual
value in memory

• The equals sign provides this function

• The expression on the right is evaluated and the result is
stored as the value of the variable on the left

• Any value previously stored in total is overwritten

• You can only assign a value to a variable that is
consistent with the variable's declared type

YES: total = 92; NO: total = false; total = "hello";

• See Geometry.java (page 68)

total = 55;

15

Variables and Literals

int i = 7, j = -8, k = 9;

double d = 4.2;

char c = 'f';

boolean isItOn = true;

String str = “Hello World”;

System.out.println(str + " " + (i + (j * -1) *
(2.9 / k)) + c + “oo ” + (isItOn && false) +
'\n');

16

Object Data

 In addition to the usual primitive data types, we also

have object data types, of which there are very many!

 With a primitive type, we are dealing with the actual
value directly. This is because any two primitive

values of the same time take up the same space in

memory

 However, two different objects of the same type may

require different amounts of memory.

 Therefore, we interact with an object through a

reference – in other words, the object's location in
memory.

17

Object Data
 The reference itself can come in many forms, such

as:

 A variable

System.out.println(s);

 A literal (rare)

System.out.println("Hello");

 A method call

System.out.println(s.substring(0,3));

 An expression

System.out.println("Hello, " + "world!");

18

Object Data

 A non-existent object reference is considered to be
null (one of the Java reserved words)

– String str1 = "Hello, world!"

– String str2 = null;

– str1: [obj. address], str2: null

 Objects are more complex than primitive variables:

– Made of primitives and other objects

– Have "features" that you can access in order to

carry out tasks or get data

 Remember the distinction! Do not try to use primitives

as you would objects – or the reverse, except in special

situations

19

Character Strings

• A string of characters can be represented as a string
literal by putting double quotes around the text:

• Examples:

"This is a string literal." "X"

"123 Main Street" "" (empty string)

• Note the distinction between a primitive character ‘X’,
which holds only one character, and a String object,
which can hold a sequence of one or more characters

• Every character string is an object in Java, defined by
the String class

20

The println Method

• In the Lincoln program from Chapter 1, we invoked the
println method to print a character string

• The System.out object represents a destination (the
monitor screen) to which we can send output

System.out.println ("Whatever you are, be a good one.");

object method
name

information provided to the method
(parameters)

21

The print Method
The System.out object provides another method:
print

• Like the println method, except that it does not
start the next line

Therefore anything printed after the print method
will appear on the same line (unless you ended
the previous print command with a newline
character ('\n')

• See Countdown.java (page 59)
System.out.print (“Three… ”);
System.out.print (“Two… ”);

• Prints as:
Three… Two…

22

Combining Strings

• To combine (or "concatenate") two strings, use the

plus sign

"Peanut butter " + "and jelly"

• It can also be used to append a number to a string

• A string literal cannot be broken across two lines in

a program so we must add (or "concatenate") them

• See Facts.java (page 61)

System.out.println(“We present the following " +
"facts for your extracurricular edification”);

NOTE:

No ; here

23

String Concatenation
• The + operator is also used for arithmetic addition

• The function that it performs depends on the type of the
information on which it operates

• If at least one operand is a string, it performs string
concatenation

• If both operands are numeric, it adds them

"Hello " + 42 = "Hello 42"

4 + 42 = 46

• The + operator is evaluated left to right, but parentheses
can be used to force the order

• See Addition.java (page 62)
System.out.println(“24 and 45 concatenated: ” + 24 + 45);

• Prints as:
24 and 45 concatenated: 2445

24

String Concatenation

• The + operator is evaluated left to right, but

parentheses can be used to force the order

• See Addition.java (page 62)

System.out.println(“24 and 45 added: ” + (24 + 45));
• Prints as:

24 and 45 added: 69

Addition is

Done first

Then concatenation is done

25

Escape Sequences

• What if we want to include the quote character itself?

• The following line would confuse the compiler because it
would interpret the two pairs of quotes as two strings and
the text between the strings as a syntax error:
System.out.println ("I said "Hello" to you.");

• An escape sequence is a series of characters that
represents a special character

• Escape sequences begin with a backslash character (\)
System.out.println ("I said \"Hello\" to you.");

A String A String
Syntax

Error

A String

26

Escape Sequences
• Some Java Escape Sequences

• See Roses.java (page 64)
System.out.println(“Roses are red,\n\tViolets are blue,\n” +

• Prints as:
Roses are red,

Violets are blue,

Escape Sequence

\b

\t

\n

\r

\"

\'

\\

Meaning

backspace
tab
newline
carriage return
double quote
single quote
backslash

27

Escape Sequences

• To put a specified Unicode character into a string
using its code value, use the escape sequence:
\uhhhh where hhhh are the hexadecimal digits for
the Unicode value

• Example: Create a string with a temperature value
and the degree symbol:
double temp = 98.6;

System.out.println(

“Body temperature is ” + temp + “
\u00b0F.”);

• Prints as:
Body temperature is 98.6 ºF.

28

Methods of the String class

• String is a class and classes can have methods.

• Use the Sun website link to find definitions of the

methods for each standard library class

• The classes are listed in alphabetical order

• The String class has methods that can be used to find

out the characteristics of a String object such as its

length:
System.out.println(“Hello”.length());

• Prints the number 5 (for 5 characters in length)

