
1

Expressions, Data Conversion, and
Input

• Expressions

• Operators and Precedence

• Assignment Operators

• Data Conversion

• Input and the Scanner Class

• Reading for this class: L&L, 2.4-2.6, App D

Operators and Operands

• Operand: Can be any element that has some
value:
– A literal: 1, -2.5, true, false, 'd', “Hello World”
– A variable: name, balance, courseTitle

– (The result of) a method call: student.getName()

• Operator: Something that computes a result
using one or more operands:
– 1 + 2, 6 / 3, !studentIsSenior, count++,

– 5 * 4 == 10 * 2, 18 – 6 != 6 - 18

3

Expressions

• An expression is a combination of one or more
operators and operands

• Arithmetic expressions compute numeric results and
make use of the arithmetic operators:

• If either or both operands used by an arithmetic operator
are floating point (i.e., decimal), then the result is a
floating point

Addition +
Subtraction -
Multiplication *
Division /
Remainder %

4

Division and Remainder

• If both operands to the division operator (/) are integers,
the result is an integer (the fractional part is discarded)

• The remainder operator (%) returns the remainder after
dividing the second operand into the first

14 / 3 equals

8 / 12 equals

4

0

14 % 3 equals

8 % 12 equals

2

8

5

Operator Precedence
• Operands and operators can be combined into

complex expressions

result = total + count / max - offset;

• Operators have a well-defined precedence which
determines the order in which they are evaluated

• Multiplication, division, and remainder are evaluated
prior to addition, subtraction, and string concatenation

• Arithmetic operators with the same precedence are
evaluated from left to right, but parentheses can be
used to force the evaluation order

• See Appendix D for a more complete list of
operators and their precedence.

6

Operator Precedence

• What is the order of evaluation in the following
expressions?

a + b + c + d + e

1 432

a + b * c - d / e

3 241

a / (b + c) - d % e

2 341

a / (b * (c + (d - e)))

4 123

a / b + c - d % e

1 243Without parentheses:

With parentheses:

7

Assignment Revisited

• The assignment operator has a lower
precedence than the arithmetic operators

First the expression on the right hand
side of the = operator is evaluated

Then the result is stored in the
variable on the left hand side

answer = sum / 4 + MAX * lowest;

14 3 2

8

Assignment Revisited

• The right and left hand sides of an assignment

statement can contain the same variable

First, one is added to the
original value of count

Then the result is stored back into count
(overwriting the original value)

count = count + 1;

9

Increment and Decrement

• The increment and decrement operators use only one
operand

• The increment operator (++) adds one to its operand

• The decrement operator (--) subtracts one from its
operand

• The statement

count++;

is functionally equivalent to

count = count + 1;

10

Increment and Decrement

• The increment and decrement operators can be applied in:

– postfix form:
count++

• Gets current value, then adds 1
count--

• Gets current value, then subtracts
1

– prefix form:
++count

• Adds 1 and then gets new value
--count

• Subtracts 1 and then gets new value

Because of these subtleties, the increment and
decrement operators should be used with care

11

Assignment Operators

• Often we perform an operation on a variable,
and then store the result back into that variable

• Java provides assignment operators to simplify
that process

• For example, the statement

num += count;

is equivalent to

num = num + count;

12

Assignment Operators

• There are many assignment operators in
Java, including the following:

Operator

+=

-=

*=

/=

%=

Example

x += y

x -= y

x *= y

x /= y

x %= y

Equivalent To

x = x + y

x = x - y

x = x * y

x = x / y

x = x % y

13

Assignment Operators

• The right hand side of an assignment operator can be a
complex expression

• The entire right-hand expression is evaluated first, then
the result is combined with the original variable

• Therefore

result /= (total-MIN) % num;

is equivalent to

result = result / ((total-MIN) % num);

3 1 2

Expressions such as the former, if used correctly,
can enhance your code's readability

14

Assignment Operators

• The behavior of some assignment operators

depends on the types of the operands

• If the operands to the += operator are strings,

the assignment operator performs string

concatenation

• The behavior of an assignment operator (+=) is

always consistent with the behavior of the
corresponding operator (+)

15

Data Conversion

• Sometimes it is convenient to convert data

from one type to another

• For example, in a particular situation we may

want to treat an integer as a decimal value

• These conversions do not change the type of

a variable or the value that's stored in it – they

only convert the value itself as part of a

computation

16

Data Conversion

• Conversions must be handled carefully to avoid losing
information

• Widening conversions are safest because they tend to
go from a small data type to a larger one (such as a
short to an int)

• Narrowing conversions can lose information because
they tend to go from a large data type to a smaller one
(such as an int to a short)

• In Java, data conversions can occur in three ways:

– assignment conversion

– promotion

– casting

17

Assignment Conversion

• Assignment conversion occurs when a value of one type
is assigned to a variable of another

• For example, the following assignment converts the
value stored in the dollars variable to a double value

double money;
int dollars = 123;
money = dollars; // money == 123.0

• Only widening conversions can happen via assignment

The type and value of dollars will not be changed.
dollars is still an int equal to 123 (not 123.0)

18

Promotion

• Promotion happens automatically when operators

in expressions convert their operands

• For example, if sum is a double and count is an

int, the value of count is promoted to a floating

point value to perform the following calculation:

double result = sum / count;

• The value and type of count will not be changed

19

Casting
• Casting is a powerful and dangerous conversion

technique

• Both widening and narrowing conversions can be done by
explicitly casting a value

• To cast, the desired type is put in parentheses in front of the
value being converted

• For example, if total and count are integers, but we want
a floating point result when dividing them, we cast total or
count to a double for purposes of the calculation:

double result = (double) total / count;

• Then, the other variable will be promoted, but the value and
type of total and count will not be changed

Some Special Cases

• The default type of a constant with a decimal point is

double:
float f1 = 1.2; // narrowing!

float f1 = (float) 1.2 // needs a cast

float f2 = 1.2f; // OR use a float literal

• The default type of a whole number is int

• This causes an odd behavior where a literal whole

number value too large for an int will cause a compiler

error:

long longVar = 3000000000; // wrong!

• Compiler tries to interpret it as an int - fails!

• Use a long literal – ex.: 3000000000L 20

Some Special Cases

• Results of byte, float, int, or long divide by
zero are different from float or double divide by

zero

• If int count equals 0, depends on type of sum:

ave = sum/count;// if int, exception

Throws an exception (i.e., crashes program)

because it is mathematically impossible

ave = sum/count;// if double,

“Infinity”
The float and double types can have a value of

"Infinity", unlike integer types
21

22

Character Arithmetic
• Because characters are associated with 16-bit

integer values, you can do arithmetic with

characters!

• For example, the expression 'b' - 'a' will

evaluate to 1 because the integer value of 'a' is

one greater than that of 'b'.

• In addition, you can do arithmetic with characters

and other numeric types, and the standard rules of

data conversion (e.g. widening vs narrowing) will

apply.

23

Character Arithmetic
• Statements: Prints:

System.out.println('a'); // a

System.out.println(97); // 97

System.out.println((int) 'a'); // 97

System.out.println((char) 97); // a

 These five will print as:

int i = 0;

System.out.println((char) ('A' + i++));

System.out.println((char) ('A' + i++));

System.out.println((char) ('A' + i++));

System.out.println((char) ('A' + i++));

A

B

C

D

24

Character Arithmetic
• Why does... print as?

System.out.println('a'); // a

Character literal: 'a'

System.out.println(97); // 97

Integer literal: 97

System.out.println((int) 'a'); // 97

Character value converted to an int value: 97

System.out.println((char) 97); // a

Integer value converted to a char value: 'a'

25

Character Arithmetic

• Why does... print as?
int i = 0;

System.out.println((char) ('A' + i++));

System.out.println((char) ('A' + i++));

System.out.println((char) ('A' + i++));

System.out.println((char) ('A' + i++));

 It has to do with the steps of conversion:
1) 'A' + i++ → char value of 'A' is promoted to int: 97

2) 97 + i → evaluates to an int
3) The cast converts the resulting int value to a char

value, the latter of which is what gets printed.

(NOTE: The letters are printed successively because i

starts off as zero and gets post-incremented)

A

B

C

D

26

Reading Input
• Programs generally need input on which to operate

• The Scanner class provides convenient methods

for reading input values of various types

• A Scanner object can be set up to read input from

various sources, including from the user typing the

values on the keyboard

• Keyboard input is represented by the System.in

object

27

Reading Input
• The following line allows you to use the standard

library Scanner class in statements in your class:

import java.util.Scanner;

• The following line creates a Scanner object that
reads from the keyboard:

Scanner scan = new Scanner(System.in);

• The new operator creates the Scanner object

• Once created, the Scanner object can be used
to invoke various input methods, such as:
String answer = scan.nextLine();

28

Reading Input
• The Scanner class is part of the java.util

class library (not available by default like String)
and must be imported into a program to be
used

• See Echo.java (page 89)

• The nextLine method reads all of the input
until the end of the line is found

• The details of object creation and class libraries
are discussed later in the course

29

Input Tokens

• Unless specified otherwise, white space is used
to separate the elements (called tokens) of the
input

• White space includes space characters, tabs,
new line characters

• The next method of the Scanner class reads
the next input token and returns it as a String

• Methods such as nextInt and nextDouble
read data of particular types

• See GasMileage.java (page 90)

