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Loops – While, Do, For

• Repetition Statements
–While
– Do
– For

• Introduction to Arrays
• Reading for this Lecture, L&L, 5.4, 

6.3-6.4, 8.1-8.2
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Repetition Statements

• Repetition statements – better known as loops 
– allow us to execute code multiple times

• The repetition is controlled by boolean 
expressions

• Java has three kinds of loops:
while
do-while
for

• The programmer should choose the right kind 
of loop for the situation
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The while Loop
• A while loop has the following syntax:

• If condition is true, statement is executed

• Then condition is evaluated again, and if it 
is still true, statement is executed again

• statement is executed repeatedly until 
condition becomes false

while ( condition ){
   statement;
}
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The while Loop
• An example of a while loop:

• If the condition of a while loop is 
false to begin with, the statement is 
never executed

• Therefore, the body of a while loop 
will execute 0+ times

boolean done = false;
while (!done)
{
   body of loop statements;
   if (some condition)
      done = true;
}
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The while Loop

• Let's look at some examples of loop 
processing

• A loop can be used to maintain a running 
sum (for example, our dice games!)

• You can have a fag or signal (called a 
sentinel value) that represents the end of 
input (not data!) and stops the loop

• A loop can also be used for input 
validation, making a program more robust
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Infinite Loops

• Executing statement must eventually make 
condition false

• If not, you have an infinite loop, which will 
run until the user interrupts the program

• This is a common logical error
• You should always double check the logic of 

your program to ensure that your loops will 
eventually terminate

while ( condition ){
   statement;
}
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Infinite Loops
• An example of an infinite loop:

• This loop will go on forever (in theory, 
at least!) until the user externally 
interrupts the program

boolean done = false;
while (!done)
{
   System.out.println (“Whiling away the time ...”);
   // Note: no update for the value of done!!
}
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Nested Loops

• As with if statements, you can have 
loops inside of loops!

• For each iteration of the outer loop, 
the inner loop runs through 
completely

• See PalindromeTester.java

file:///Users/development/Documents/umbcs_materials/public_html/teaching/common/lecture/java/intro/ignore/..%2Fexamples%2Fchap05%2FPalindromeTester.java
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Nested Loops

• How many times will the string "Here" be 
printed?

count1 = 1;
while (count1 <= 10)
{
   count2 = 1;
   while (count2 <= 20)
   {
      System.out.println ("Here");
      count2++;
   }
   count1++;
}

10 * 20 = 200
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The do-while Loop
• A do-while loop looks like this:

• statement is executed once initially, 
guaranteed to run at least once, and 
then the condition is evaluated

• statement is executed repeatedly 
until condition becomes false

do
{
   statement;
}
while ( condition );
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The do-while Loop

• An example of a do-while loop:

• The body of a do loop executes 1+ 
times (versus the 0+ times of while)

• See ReverseNumber.java

boolean done = false;
do
{
   body of loop statements;
   if (some condition)

done = true;
} while (!done);

file:///Users/development/Documents/umbcs_materials/public_html/teaching/common/lecture/java/intro/ignore/..%2Fexamples%2Fchap05%2FReverseNumber.java
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The for Loop

• A for loop has the following syntax:

for ( initialization ; condition ; increment ){
   statement;
}

The initialization
is executed once

before the loop begins

The statement is
executed until the

condition becomes false

The increment portion is 
executed at the end of each 

iteration
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The for Loop

• A for loop is functionally equivalent 
to the following while loop structure:

initialization;
while ( condition )
{
   statement;
   increment;
}
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The for Loop
• An example of a for loop:

• The initialization section can be used 
to declare an int variable for counting

• Like a while loop, the condition of a 
for loop is tested prior to executing 
the loop

• Therefore, the body of a for loop will 
execute 0+ times

for (int count=1; count <= 5; count++){
   System.out.println (count);
}
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The for Loop
• The increment section can perform 

any calculation

• A for loop is well suited for executing 
the  body a specific number of times 
that can be calculated or determined 
in advance

• See Multiples.java
• See Stars.java

for (int num=100; num > 0; num -= 5){
   System.out.println (num);
}

file:///Users/development/Documents/umbcs_materials/public_html/teaching/common/lecture/java/intro/ignore/..%2Fexamples%2Fchap05%2FMultiples.java
file:///Users/development/Documents/umbcs_materials/public_html/teaching/common/lecture/java/intro/ignore/..%2Fexamples%2Fchap05%2FStars.java
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The for Loop

• Each expression in a for statement is optional
• If the initialization is left out, no initialization 

is performed
• If the condition is left out, it is always 

considered to be true, and therefore creates an 
infinite loop

• If the increment is left out, no increment 
operation is performed

• “Loop forever” can be written as:
for (;;) 
  {body;}
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Introduction to Arrays

• It is very useful to have a whole group of 
variables that can be processed sequentially 
in a loop 

• But we don’t want to declare them as 
individual variables like this:
int num0, num1, num2, num3, num4;

• We can’t use a loop index variable to refer to 
one variable num0, num1, etc without a lot of 
nested if-else statements or a switch 
statement
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Introduction to Arrays
• Without arrays we would need to do 

something like this (NOTE: Please don’t do it 
this way!):
int num0, num1, num2, num3, num4;
for (int i = 0; i < 5; i++) {
switch (i) {

case 0:
statements using num0;
break;

case 1:
same statements using num1;
break;

// three more cases needed here
 }

}
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Introduction to Arrays

• We can declare a whole group (called 
an array) of variables of a specific type 
int[] nums = new int [5];

char[] chars = new char[10];
 You can have arrays of objects, as well
String[] strings = new String[5];
• Note: Those variables in the arrays 

have not been initialized yet.
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Introduction to Arrays
• You access a variable within an array by 

it's index.

• Indices start at 0 (not 1). To illustrate, 
take an array at location X using a type 
of size typeSize:

• 1st is at X, the 2nd at X + (typeSize), 
the third at X + (2*),..., the Nth at  X + 
((N-1) * typeSize).

• Given an array items, the first one is 
items[0], the fifth one items[4], etc. 

X ….
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Introduction to Arrays

• To assign values to each variable, we can 
use a for-loop:
for (int i = 0; i < 5; i++){
nums[i] = some valid integer expression;

}

• A single variable can be selected using an 
integer expression or value inside the [ ]: 

count = 8;

int result = nums[count];
int otherResult = nums[count * 3 % 5]; 
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Arrays and Initializer Lists

• An array can be defined and initialized with an 
an initializer list (an array literal):
char [] vowels = {‘a’, ‘e’, ‘i’, ‘o’, ‘u’}; 

• Java allocates right amount of space based upon 
the list size

• An initializer list can be used only when the 
array is first declared, as above

• Afterward, each  element of the array can be 
accessed with an index, per usual:
boolean result = vowels[3] == ‘o’   // true
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Arrays and Loops

• Now we can coordinate the processing 
of one variable with the execution of 
one pass through a loop using an index 
variable, e.g:
int MAX = 5; // symbolic constant

int[] nums = new int[MAX];

for (int i = 0; i < MAX; i++) {

// use i as array index variable

Java statements using nums[i];

}
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Arrays and Loops
• Arrays are objects (only without a class)
• Each array has an attribute “length” that 

we can access to get the length of that 
array, e.g., nums.length == MAX:
int MAX = 5; // symbolic constant

int [ ] nums = new int [MAX];

for (int i = 0; i < nums.length; i++) 
{

 // use i as array index variable

in Java statements using nums[i];

}



Method versus Attribute

• Remember that the String class had a 
length method, that we accessed as:
int length = stringName.length();

• For array length, we use a length 
attribute not a method, hence no ()
int length = arrayName.length;

• The distinction is subtle but 
important, and we will get into it in 
more detail after the first exam.
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