
1

Loops – While, Do, For

• Repetition Statements
–While
– Do
– For

• Introduction to Arrays
• Reading for this Lecture, L&L, 5.4,

6.3-6.4, 8.1-8.2

2

Repetition Statements

• Repetition statements – better known as loops
– allow us to execute code multiple times

• The repetition is controlled by boolean
expressions

• Java has three kinds of loops:
while
do-while
for

• The programmer should choose the right kind
of loop for the situation

3

The while Loop
• A while loop has the following syntax:

• If condition is true, statement is executed

• Then condition is evaluated again, and if it
is still true, statement is executed again

• statement is executed repeatedly until
condition becomes false

while (condition){
 statement;
}

4

The while Loop
• An example of a while loop:

• If the condition of a while loop is
false to begin with, the statement is
never executed

• Therefore, the body of a while loop
will execute 0+ times

boolean done = false;
while (!done)
{
 body of loop statements;
 if (some condition)
 done = true;
}

5

The while Loop

• Let's look at some examples of loop
processing

• A loop can be used to maintain a running
sum (for example, our dice games!)

• You can have a fag or signal (called a
sentinel value) that represents the end of
input (not data!) and stops the loop

• A loop can also be used for input
validation, making a program more robust

6

Infinite Loops

• Executing statement must eventually make
condition false

• If not, you have an infinite loop, which will
run until the user interrupts the program

• This is a common logical error
• You should always double check the logic of

your program to ensure that your loops will
eventually terminate

while (condition){
 statement;
}

7

Infinite Loops
• An example of an infinite loop:

• This loop will go on forever (in theory,
at least!) until the user externally
interrupts the program

boolean done = false;
while (!done)
{
 System.out.println (“Whiling away the time ...”);
 // Note: no update for the value of done!!
}

8

Nested Loops

• As with if statements, you can have
loops inside of loops!

• For each iteration of the outer loop,
the inner loop runs through
completely

• See PalindromeTester.java

file:///Users/development/Documents/umbcs_materials/public_html/teaching/common/lecture/java/intro/ignore/..%2Fexamples%2Fchap05%2FPalindromeTester.java

9

Nested Loops

• How many times will the string "Here" be
printed?

count1 = 1;
while (count1 <= 10)
{
 count2 = 1;
 while (count2 <= 20)
 {
 System.out.println ("Here");
 count2++;
 }
 count1++;
}

10 * 20 = 200

10

The do-while Loop
• A do-while loop looks like this:

• statement is executed once initially,
guaranteed to run at least once, and
then the condition is evaluated

• statement is executed repeatedly
until condition becomes false

do
{
 statement;
}
while (condition);

11

The do-while Loop

• An example of a do-while loop:

• The body of a do loop executes 1+
times (versus the 0+ times of while)

• See ReverseNumber.java

boolean done = false;
do
{
 body of loop statements;
 if (some condition)

done = true;
} while (!done);

file:///Users/development/Documents/umbcs_materials/public_html/teaching/common/lecture/java/intro/ignore/..%2Fexamples%2Fchap05%2FReverseNumber.java

12

The for Loop

• A for loop has the following syntax:

for (initialization ; condition ; increment){
 statement;
}

The initialization
is executed once

before the loop begins

The statement is
executed until the

condition becomes false

The increment portion is
executed at the end of each

iteration

13

The for Loop

• A for loop is functionally equivalent
to the following while loop structure:

initialization;
while (condition)
{
 statement;
 increment;
}

14

The for Loop
• An example of a for loop:

• The initialization section can be used
to declare an int variable for counting

• Like a while loop, the condition of a
for loop is tested prior to executing
the loop

• Therefore, the body of a for loop will
execute 0+ times

for (int count=1; count <= 5; count++){
 System.out.println (count);
}

15

The for Loop
• The increment section can perform

any calculation

• A for loop is well suited for executing
the body a specific number of times
that can be calculated or determined
in advance

• See Multiples.java
• See Stars.java

for (int num=100; num > 0; num -= 5){
 System.out.println (num);
}

file:///Users/development/Documents/umbcs_materials/public_html/teaching/common/lecture/java/intro/ignore/..%2Fexamples%2Fchap05%2FMultiples.java
file:///Users/development/Documents/umbcs_materials/public_html/teaching/common/lecture/java/intro/ignore/..%2Fexamples%2Fchap05%2FStars.java

16

The for Loop

• Each expression in a for statement is optional
• If the initialization is left out, no initialization

is performed
• If the condition is left out, it is always

considered to be true, and therefore creates an
infinite loop

• If the increment is left out, no increment
operation is performed

• “Loop forever” can be written as:
for (;;)
 {body;}

17

Introduction to Arrays

• It is very useful to have a whole group of
variables that can be processed sequentially
in a loop

• But we don’t want to declare them as
individual variables like this:
int num0, num1, num2, num3, num4;

• We can’t use a loop index variable to refer to
one variable num0, num1, etc without a lot of
nested if-else statements or a switch
statement

18

Introduction to Arrays
• Without arrays we would need to do

something like this (NOTE: Please don’t do it
this way!):
int num0, num1, num2, num3, num4;
for (int i = 0; i < 5; i++) {
switch (i) {

case 0:
statements using num0;
break;

case 1:
same statements using num1;
break;

// three more cases needed here
 }

}

19

Introduction to Arrays

• We can declare a whole group (called
an array) of variables of a specific type
int[] nums = new int [5];

char[] chars = new char[10];
 You can have arrays of objects, as well
String[] strings = new String[5];
• Note: Those variables in the arrays

have not been initialized yet.

20

Introduction to Arrays
• You access a variable within an array by

it's index.

• Indices start at 0 (not 1). To illustrate,
take an array at location X using a type
of size typeSize:

• 1st is at X, the 2nd at X + (typeSize),
the third at X + (2*),..., the Nth at X +
((N-1) * typeSize).

• Given an array items, the first one is
items[0], the fifth one items[4], etc.

X ….

21

Introduction to Arrays

• To assign values to each variable, we can
use a for-loop:
for (int i = 0; i < 5; i++){
nums[i] = some valid integer expression;

}

• A single variable can be selected using an
integer expression or value inside the []:

count = 8;

int result = nums[count];
int otherResult = nums[count * 3 % 5];

22

Arrays and Initializer Lists

• An array can be defined and initialized with an
an initializer list (an array literal):
char [] vowels = {‘a’, ‘e’, ‘i’, ‘o’, ‘u’};

• Java allocates right amount of space based upon
the list size

• An initializer list can be used only when the
array is first declared, as above

• Afterward, each element of the array can be
accessed with an index, per usual:
boolean result = vowels[3] == ‘o’ // true

23

Arrays and Loops

• Now we can coordinate the processing
of one variable with the execution of
one pass through a loop using an index
variable, e.g:
int MAX = 5; // symbolic constant

int[] nums = new int[MAX];

for (int i = 0; i < MAX; i++) {

// use i as array index variable

Java statements using nums[i];

}

24

Arrays and Loops
• Arrays are objects (only without a class)
• Each array has an attribute “length” that

we can access to get the length of that
array, e.g., nums.length == MAX:
int MAX = 5; // symbolic constant

int [] nums = new int [MAX];

for (int i = 0; i < nums.length; i++)
{

 // use i as array index variable

in Java statements using nums[i];

}

Method versus Attribute

• Remember that the String class had a
length method, that we accessed as:
int length = stringName.length();

• For array length, we use a length
attribute not a method, hence no ()
int length = arrayName.length;

• The distinction is subtle but
important, and we will get into it in
more detail after the first exam.

25

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

