
1

More on Arrays and Loops

• Reading for this Lecture:
– Section 5.4, 6.3-6.4, 8.1-8.2

• Break and Continue in Loops
• Arrays and For-each Loops
• Arrays and Loops - Examples

2

Break and Continue in Loops

• A break statement ends the loop (goes to just
outside the loop’s closing “}”)

• A continue statement skips to the next
iteration (goes to just inside the closing “}”)

• Both are often discouraged because an
alternative way of coding the logic is usually
available

• Sometimes, though, you may fnd them helpful
– just make sure to use them correctly!

3

Break and Continue in Loops

• Bad practice to use an infnite loop
with only break statements to exit:
while (true)

{

 if (normal exit condition)

 break;

 // body of loop

}

4

Break and Continue in Loops
• Accepted practice for a loop with a

normal exit condition to use break
statements for exiting the loop on error
condition(s):
while (!(normal exit condition))
{
 if (some error condition) {

// print an error message e.g.
 break;
 }
 // rest of body of loop

}

5

Break and Continue in Loops

• continue is often categorically
discouraged:
while (!(normal exit condition))

{

 if (condition1)

 continue;

 // rest of body of loop

}

• An if statement without continue (as on
the next slide) is an alternative

6

Break and Continue in Loops

• Can use if alone rather than continue:
while (!(normal exit condition))

{

 if (condition2)

 {

 // rest of body of loop

 }

}

• Note: condition2 is not the same as
condition1 from previous slide

7

“for-each” with Arrays

• We can use “for-each” loops to access the
elements in an array.

• General structure:

type[] array = {item1, item2, item3}; OR

type[] array = new type[3];

(substitute actual data type for “type” and valid values
for “item1”, etc.)

// for-each loop – note difference!

for (type entry : array){
System.out.println(entry);

}

8

“for-each” with Arrays

• Example Code:
boolean [] array = {true, false, true};

// for-each loop – note difference with for

for (boolean entry : array)
System.out.println(entry);

• Example Run:
true

false

true

“for-each” with Arrays
• Note limitation of “for-each” version

• We can not initialize or update the
element values in the array

for(int num : nums)

 num = 5; // doesn’t update element

• Requires a regular “for” loop for that
for(int i = 0; i < nums.length; i++)

 nums[i] = 5;

9

Arrays and Loops - Examples
public class BasicArray {
 public static void main (String[] args){
 final int LIMIT = 15, MULTIPLE = 10;
 int[] list = new int[LIMIT];

 // Initialize the array values
 for (int index = 0; index < LIMIT; index++)
 list[index] = index * MULTIPLE;

 list[5] = 999; // change one array value

 // Print the array values
 for (int value : list)
 System.out.print (value + " ");
 }
}
> run BasicArray
0 10 20 30 40 999 60 70 80 90 100 110 120 130 140 >

10

Arrays and Loops - Examples
public class ArrayExample {
 public static void main(String [] args){
 char [] vowels = {'a', 'e', 'i', 'o', 'u'};
 int [] counts = new int[vowels.length];
 String s = "Now is the time for all “ +

 “good men to come to the “ +
 “aid of their country.";

 for (int i = 0; i < vowels.length; i++) {
 for (int j = 0; j < s.length(); j++)
 if (vowels[i] == s.charAt(j))
 counts[i]++;
 }
 for (int i = 0; i < vowels.length; i ++)
 System.out.println(vowels[i] + "\'s = " +

counts[i]);
 }
}

11

> run
ArrayExample

a's = 2
e's = 6
i's = 4
o's = 9
u's = 1
>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

