
Exceptions

• Exceptions
• Throwing Exceptions
• Handling Exceptions
• Try statement and catch / finally clauses

• Checked and unchecked exceptions
• Throws clause
• Reading for this lecture: L&L 10.1 – 10.6

2

Exceptions

• An exception is an object that flags/ describes the
occurrence of an unusual or erroneous situation

• Java has a predefined set of Exception classes for
errors that can occur during execution
– e.g ArithmeticException

• We can write our own Exception classes if needed
• When code in a program detects an “impossible

condition”, it can throw a defined exception object
• The manner in which exceptions are processed is

an important design consideration

Throwing Exceptions

• For code to “throw” an exception:
– It must detect the “impossible” situation
– Instantiate and “throw” an exception object

• Example (throw is a Java reserved word):
if (boolean logic to detect impossible situation)

 throw new NameOfException(“text to print”);

• Some Java statements or methods in the
class library may throw exceptions this way

4

Handling Exceptions
• A program can deal with an exception in one

of three ways:
– ignore it (Let the JVM shut down the program)
– handle it where it occurs
– handle it at another place in the program

• If we ignore it, we get something like this in
the interactions pane (See Zero.java):
java.lang.ArithmeticException: / by zero

at Zero.main(Zero.java:17)
at sun.reflect.NativeMethodAccessor…

 …

5

The try Statement / catch Clause

• To handle an exception in a program, the line that
may throw the exception is executed within a try
statement followed by one or more catch clauses

• Each catch clause has an exception type and
reference name and is called an exception handler

• If an exception occurs,
– Processing stops in the body of the try statement
– Processing continues at the start of the first catch

clause matching the type of exception that occurred

• The reference name can be used in the catch
clause to get information about the exception

6

The finally Clause

• A try statement can have an optional clause
following the catch clauses, designated by the
reserved word finally

• The Java statements in the finally clause are
always executed
– If no exception is generated, the statements in the

finally clause are executed after the statements in the
try block complete

– If an exception is generated, the statements in the
finally clause are executed after the statements in the
appropriate catch clause complete

Example of try-catch-finally

try
{
System.out.println(Integer.parseInt(string));

}
catch (NumberFormatException e)
{
System.out.println(“Caught exception: ” + e);

}
finally
{
System.out.println(“Done.”);

}

8

Exception Propagation

• An exception can be propagated up to the
caller to be handled at a higher level if it is
not appropriate to handle it where it occurs

• Exceptions propagate up through the
method calling hierarchy until they are
caught and handled or until they reach the
level of the main method and/or JVM

• See Propagation.java (page 546)
• See ExceptionScope.java (page 547)

file:///Users/development/Documents/umbcs_materials/public_html/teaching/cs110/lectures/ignore/..%2Fexamples%2Fchap10%2FPropagation.java
file:///Users/development/Documents/umbcs_materials/public_html/teaching/cs110/lectures/ignore/..%2Fexamples%2Fchap10%2FExceptionScope.java

9

Checked/Unchecked Exceptions

• An exception is considered to be either
checked or unchecked

• A RunTimeException or its decendents
such as ArithmeticException,
NullPointerException, etc are the
only ones considered to be unchecked

• All other exceptions are considered to be
checked

• Many of the checked exceptions are
related to input / output, e.g.
IOException

Checked Exceptions
• If a method can generate a checked exception,

it must have a throws clause in its header
• (Note: “throws” is a different reserved word)
• If method1 calls method2 that has a throws

clause in its method header, method1 must:
– Use try-catch around the call to method2

OR
– Have a throws clause in its own method header

• The compiler will issue an error if a checked
exception is not caught or listed in a throws
clause

Example of the throws clause

public class FileDisplay
{
 public FileDisplay() throws IOException
 {
 Scanner scan = new Scanner(System.in);
 System.out.println("Enter name of file");
 File file = new File(scan.nextLine());

 // this line may throw an IOException

 // and its not inside a try statement
 scan = new Scanner (file);

Unchecked Exceptions

• An unchecked exception does not require
explicit handling

• Code or calls to a method that may generate
an unchecked exception can be put inside a
try-catch statement, but that is optional

	Exceptions
	Slide 2
	Throwing Exceptions
	Handling Exceptions
	The try Statement / catch Clause
	The finally Clause
	Example of try-catch-finally
	Exception Propagation
	Checked/Unchecked Exceptions
	Checked Exceptions
	Example of the throws clause
	Unchecked Exceptions

