Class Exercise 2

* Some of you have not completed Class Exercise 2.

* You must do this today or you will lose points.

The Command Line

* In this course we will be using the command line
* On the command line, you talk to the machine by typing
* You have to be careful what you type

* If you make a mistake of even one character, then the
command will not work

The Command Line

* This 1s not the way most of you have interacted with
computers

* You are used to a Graphical User Inteface (GUI), where a
great deal of effort has been spent trying to make things
easier for the user

* The command line 1s NOT a user friendly environment

e | sometimes call it a "user hostile" environment

The Command Line

* So why do we study the command line?

* Because...the command line has more power

* GUI's take time to create and maintain, so they will never
have all the features of the command line

* Most Linux/Unix server installations never install a GUI

* A GUI uses system resources that are better spent on services

The Command Line

* The commands you type at the command line can be put 1nto
text files

* These files are called shell scripts

* Instead of typing the commands, you can simply run the shell
script

* This makes 1t easy to automate routine tasks

The Unix script Command

* Sometimes it 1s useful to keep a record of your Unix session

* If you are installing new software, it is good to keep a record
of the options you chose

* Unix provides the script command for this purpose

* When you run script, Unix creates a new shell session.

* Everything you type at the keyboard and everything that gets
printed to the terminal is stored 1n a text file

The Unix script Command

* This text file 1s a record of everything that happened in that
shell session

* If you run script with no arguments, the session will be
recorded 1n a file named typescript

* This file will be created 1n the directory you were in when
you started script

* If you run script with an argument, script will use that
argument as the name of the transcript file

The Unix script Command

* To end the script session, type exit at the command line
* script does not save anything to disk until you type exit

* If you quit your ssh session before typing exit, NOTHING will
be recorded

o Be sure you type exit before disconnecting from your ssh session

o If you quit script and then later run script again in the same directory,
you will lose your first session results

o The file created by the second run of script, will overwrite the contents
of the first session

The Unix script Command

* If you need to add to a previous script file, use the -a option

* If you run this:
script -a

your new session will be added — or appended — to the end of
your old session file

* When you type exif to end a script session, you will find
yourself back in the directory from which you ran script

* This will happen even if you changed directories in the
process of your script session

The Editor Used in This Class

* Most Unix system administrators use the vim text editor
* vim 1s an updated version of the vi editor

* The textbook devotes an entire chapter to vim -- and another
chapter to emacs

* emacs 1s preferred by programmers

* You may wish to study the relevant chapters, on your own,
for your personal edification and knowledge

The Editor Used in This Class

*] don't want to spend class time teaching you either editor
* The only way to learn an editor 1s to use it

* Both vim and emacs have many features, and using them can
be very confusing at first

* Today I'll show you nano, a simple text editor that will
suffice well for our purposes

* Today's class exercise will give you some practice with nano

The Editor Used in This Class

* You are free you use any Unix text editor in this class

* Do not use a Windows text editor, such as Notepad

* Such editors create non-printing format characters in the file,
which makes it very difficult to read them

* If you use something that is NOT a Unix text editor when
you are creating a homework file, I'll deduct 10 percent (of
the total) from your grade

The nano Text Editor

* nano 1s a simple text editor created as part of the GNU
project

* In nano you 1ssue a command by holding down the Control
key while pressing a letter key

* You can move to the beginning of a line of text by pressing
Control-A -- and move to the end of the line with Control-E

* When I write something like "Control-A", I mean hold down
the Control key while pressing the A key

The nano Text Editor

* Although I used a capital A here, I do not mean you should
hold down the Shift key

* | use capital letters when writing control key sequences
because the capital letters are easier to read

* Some of the basic nano commands appear at the bottom of
the page

* The ” 1n this list of commands stands for the Control key,
so *O means Control-O

The nano Text Editor

* The nano teature set 1s limited
* You can only work with one file at a time

* You can search for text, but there 1s no search and replace
feature — which may take some getting used to

* However, nano does have a limited cut and paste feature

* If you press Control-K the entire line will disappear, but if
you go to another line and press Control-U, the line will be
pasted back at that point

The nano Text Editor

* When you want to save a file, you press Control-0, and the
name of the file will appear at the bottom of the screen

* (You may also be offered a yes-or-no option for saving the
file, in which case you should answer y for Yes or n for No)

* You need to hit Enter to accept that name and complete the
Save process

* Control-X will quit nano

The nano Text Editor

* Prof. Hoffman has created a web page with instructions for
using nano here:

http://www.cs.umb.edu/~ghoffman/linux/
nano_text_editor.html

* There 1s a link to 1t on the class web page

* (If the link 1s broken, please let me know..)

Correcting Mistakes on the Command Line

* The command line 1s NOT a user friendly environment

* There are no menus, you have to remember the names of all
commands

* This 1s one reason Unix command names tend to be short

* If you make a mistake typing a command, Unix will respond
with a cryptic error message

Correcting Mistakes on the Command Line

* Fortunately, Unix provides command line editing features that
make 1t relatively easy to correct mistakes

o Control-A moves to the beginning of the command line
o Control-E moves to the end of the command line

o Control-U removes all text from your current position to the
beginning of the line

o (i’lonltml-K removes all text from your current position to the end of
the line

* The right and left arrow keys can also be used to move back and
forth over the command line

* Today's class exercise will let you practice these features

Retrieving Your Last Command Line Entry

* When you get an error message from the command line, you
need to enter the command again

* This can be very annoying for long and complicated
commands

* Fortunately, Unix provides the history mechanism

* This feature allows you to retrieve previous commands that
you typed earlier

* You use this feature by pressing the up and down arrow keys

Retrieving Your Last Command Line Entry

* To retrieve the last command, simply hit the up arrow

* To retrieve the next to last command, hit the up arrow twice

* Once you have used the up arrow, you can then use the down
arrow to go 1n the opposite direction

* Get 1n the habit of using the history feature

* [t can save you a lot of typing, especially when you learn how
to use the history command in combination with grep...

Aborting a Running Program

* Most Unix commands execute quickly

* But some commands, like a compiler, can take a long time
* When you need to abort a running program use Control-C
* This will work on most Linux/Unix systems

* We will also learn about other options later, such as:
o Suspending

o Foregrounding and backgrounding

Using Options with Unix Commands

* Most Unix commands have options which modity their behavior
* These options appear after the command
* You must type a space before entering the option

* Before the GNU project, most options used a single letter and
were preceded by a single dash

* Most GNU utilities use options which consist of words preceded
by two dashes

* Often, commands will support both option formats...

Using Options with Unix Commands

* Example:

$ cat --help
Usage: cat [OPTION]... [FILE]...

Concatenate FILE(s), or standard input, to standard output.

-A, --show-all equivalent to -vET

-b, —-—-number-nonblank number nonempty output lines

Getting Help with Unix Commands

* Most Unix commands have a help option, which will provide a brief
description of the command — along with a list of options:

$ 1ls --help

Usage: 1ls [OPTION]... [FILE]...

List information about the FILEs (the current directory by
default) .

Sort entries alphabetically if none of -cftuvSUX nor --sort.

Mandatory arguments to long options are mandatory for short options

too.
-a, —--all do not ignore entries starting with

-A, —--almost-all do not list implied . and ..

* Depending on the command, you can use -k, or --help, or both to get
help with 1t

The System Manual

* Unix comes with two extensive documentation systems
* The first system are the man pages

* To use these pages type man, followed by the name of the command:
man ls
* When you run man you will see a series of help pages...

o Hit the Enter key to move down one line
o Hit the spacebar to move to the next screen

o To exit, type q

* You can move up and down through the man pages by pressing the up
and down arrow keys

The System Manual

* The man pages are often very technical

* They can be quite intimidating, but you don't have to read all of
the page

* You only have to read enough to answer your question

o You might read the first few lines which show the arguments expected
o Then you can skim down the list of options
o Learn the art of reading just enough to get the job done

o This has been called this "guerrilla reading”
o Go 1n, get what you need, and get out

e [1inux also

The info System

provides an entirely different documentation system

* This system 1s menu-based and was created by the GNU project

* To enter this system use the info command

* You can follow info with the name of a command

* The up and
at a time

| down arrow keys will move up and down -- one line

* The spacebar moves you down one screen’s height

The info System

* The info system uses links

* Move down to a line with an asterisk * and hit Enter
* This will take you to a new page

* Type h for help

* Type q to quit

* For any utility created by the GNU project,
the info documents are superior to the man pages

Searching for a Keyword with apropos

* man pages are useful, but only 1f you know the name of a
command

* What 1f you don't know the name of a command?
* For this situation apropos was created

* Follow apropos with a key word, and 1t will give you a list
of man page topics

* apropos takes the word you give 1t as an argument and
searches the short description line at the top of all man pages
for a match

Searching for a Keyword with apropos

* Example:

$ apropos who

at.allow (5) - determine who can submit jobs via at or batch
at.deny (5) - determine who can submit jobs via at or batch
bsd-from (1) - print names of those who have sent mail

from (1) - print names of those who have sent mail

rwho (1) - who 1s logged in on local machines

rwhod (8) - system status server

w (1) - Show who is logged on and what they are doing.
w.procps (1) - Show who is logged on and what they are doing.
who (1) - show who is logged on

whoami (1) - print effective userid

whom (1) - report to whom a message would go

Homework Directories

* When you first log in, you will be in your home directory
* You homework needs to go into another directory

* Each of you should have a class directory, 1t244, in your
home directory

* For each homework assignment you must create a new
homework directory inside the hw directory inside
your 1t244 directory

Homework Directories

* [use a shell script to collect your homework

* If you put your homework 1n a different place, the script will
fail

* Grading homework takes a lot of time

* Having to search for your work makes the grading take
longer

* If you put your homework somewhere else you will lose 10
percent of the possible total

Using script in Homework Assignments

* Homework 2 1s your first homework assignment using Unix

* Most of the assignment asks you to perform certain tasks on
the Linux machine

* You have to use the script command to create a record of
what you have done

* I will collect this file and use it to give you a score

Using script in Homework Assignments

* Your script session does not have to be pertect
* If you make a mistake while running script, simply try again

* But it 1s best for me 1f you practice what you need to do
before you use script

* If you don't, the typescript files can become very long, which
can make the grading take much more time than it has to

* So, please, run through the homework first without
using script

Using script in Homework Assignments

* As you complete each step of the homework, you can cut and
paste the Unix command into a text file

* Then when you are sure that you have everything working,
run script copying command from your text file

 This will save me a lot of time

* Please DO NOT use an editor, like nano, while running script

* The control key sequences mess up the output

* This makes it hard for me to read and grade your homework

