
Class Exercise 2

• Some of you have not completed Class Exercise 2.

•You must do this today or you will lose points.



The Command Line

• In this course we will be using the command line

•On the command line, you talk to the machine by typing

•You have to be careful what you type

• If you make a mistake of even one character, then the 
command will not work



The Command Line

• This is not the way most of you have interacted with 
computers

•You are used to a Graphical User Inteface (GUI), where a 
great deal of effort has been spent trying to make things 
easier for the user

• The command line is NOT a user friendly environment

• I sometimes call it a "user hostile" environment



The Command Line

• So why do we study the command line?

• Because...the command line has more power

•GUI's take time to create and maintain, so they will never 
have all the features of the command line

•Most Linux/Unix server installations never install a GUI

•A GUI uses system resources that are better spent on services



The Command Line

• The commands you type at the command line can be put into 
text files

• These files are called shell scripts

• Instead of typing the commands, you can simply run the shell 
script

• This makes it easy to automate routine tasks



The Unix script Command

• Sometimes it is useful to keep a record of your Unix session

• If you are installing new software, it is good to keep a record
of the options you chose

•Unix provides the script command for this purpose

•When you run script, Unix creates a new shell session.

• Everything you type at the keyboard and everything that gets 
printed to the terminal is stored in a text file



The Unix script Command

• This text file is a record of everything that happened in that 
shell session

• If you run script with no arguments, the session will be 
recorded in a file named typescript

• This file will be created in the directory you were in when 
you started script

• If you run script with an argument, script will use that 
argument as the name of the transcript file



The Unix script Command

• To end the script session, type exit at the command line

• script does not save anything to disk until you type exit

• If you quit your ssh session before typing exit, NOTHING will 
be recorded

o Be sure you type exit before disconnecting from your ssh session

o If you quit script and then later run script again in the same directory, 
you will lose your first session results

o The file created by the second run of script, will overwrite the contents 
of the first session



The Unix script Command

• If you need to add to a previous script file, use the -a option

• If you run this:

script -a

your new session will be added – or appended – to the end of 
your old session file

•When you type exit to end a script session, you will find 
yourself back in the directory from which you ran script

• This will happen even if you changed directories in the 
process of your script session



The Editor Used in This Class

•Most Unix system administrators use the vim text editor

• vim is an updated version of the vi editor

• The textbook devotes an entire chapter to vim -- and another 
chapter to emacs

• emacs is preferred by programmers

•You may wish to study the relevant chapters, on your own, 
for your personal edification and knowledge



The Editor Used in This Class

• I don't want to spend class time teaching you either editor

• The only way to learn an editor is to use it

• Both vim and emacs have many features, and using them can 
be very confusing at first

• Today I'll show you nano, a simple text editor that will 
suffice well for our purposes

• Today's class exercise will give you some practice with nano



The Editor Used in This Class

•You are free you use any Unix text editor in this class

•Do not use a Windows text editor, such as Notepad

• Such editors create non-printing format characters in the file, 
which makes it very difficult to read them

• If you use something that is NOT a Unix text editor when 
you are creating a homework file, I'll deduct 10 percent (of 
the total) from your grade



The nano Text Editor

• nano is a simple text editor created as part of the GNU 
project

• In nano you issue a command by holding down the Control 
key while pressing a letter key

•You can move to the beginning of a line of text by pressing 
Control-A -- and move to the end of the line with Control-E

•When I write something like "Control-A", I mean hold down 
the Control key while pressing the A key



The nano Text Editor

•Although I used a capital A here, I do not mean you should 
hold down the Shift key

• I use capital letters when writing control key sequences 
because the capital letters are easier to read

• Some of the basic nano commands appear at the bottom of 
the page

• The ^ in this list of commands stands for the Control key, 
so ^O means Control-O



The nano Text Editor

• The nano feature set is limited

•You can only work with one file at a time

•You can search for text, but there is no search and replace 
feature – which may take some getting used to

•However, nano does have a limited cut and paste feature

• If you press Control-K the entire line will disappear, but if 
you go to another line and press Control-U, the line will be 
pasted back at that point



The nano Text Editor

•When you want to save a file, you press Control-O, and the 
name of the file will appear at the bottom of the screen

• (You may also be offered a yes-or-no option for saving the 
file, in which case you should answer y for Yes or n for No)

•You need to hit Enter to accept that name and complete the 
save process

• Control-X will quit nano



The nano Text Editor

• Prof. Hoffman has created a web page with instructions for 
using nano here:

http://www.cs.umb.edu/~ghoffman/linux/
nano_text_editor.html

• There is a link to it on the class web page

• (If the link is broken, please let me know..)



Correcting Mistakes on the Command Line

• The command line is NOT a user friendly environment

• There are no menus, you have to remember the names of all 
commands

• This is one reason Unix command names tend to be short

• If you make a mistake typing a command, Unix will respond 
with a cryptic error message



Correcting Mistakes on the Command Line

• Fortunately, Unix provides command line editing features that 
make it relatively easy to correct mistakes

o Control-A moves to the beginning of the command line

o Control-E moves to the end of the command line

o Control-U removes all text from your current position to the 
beginning of the line

o Control-K removes all text from your current position to the end of 
the line

• The right and left arrow keys can also be used to move back and 
forth over the command line

• Today's class exercise will let you practice these features



Retrieving Your Last Command Line Entry

•When you get an error message from the command line, you 
need to enter the command again

• This can be very annoying for long and complicated 
commands

• Fortunately, Unix provides the history mechanism

• This feature allows you to retrieve previous commands that 
you typed earlier

•You use this feature by pressing the up and down arrow keys



Retrieving Your Last Command Line Entry

• To retrieve the last command, simply hit the up arrow

• To retrieve the next to last command, hit the up arrow twice

•Once you have used the up arrow, you can then use the down
arrow to go in the opposite direction

•Get in the habit of using the history feature

• It can save you a lot of typing, especially when you learn how 
to use the history command in combination with grep...



Aborting a Running Program

•Most Unix commands execute quickly

• But some commands, like a compiler, can take a long time

•When you need to abort a running program use Control-C

• This will work on most Linux/Unix systems

•We will also learn about other options later, such as:

o Suspending

o Foregrounding and backgrounding



Using Options with Unix Commands

• Most Unix commands have options which modify their behavior

• These options appear after the command

• You must type a space before entering the option

• Before the GNU project, most options used a single letter and 
were preceded by a single dash

• Most GNU utilities use options which consist of words preceded 
by two dashes

• Often, commands will support both option formats...



Using Options with Unix Commands

• Example:

$ cat --help

Usage: cat [OPTION]... [FILE]...

Concatenate FILE(s), or standard input, to standard output.

-A, --show-all equivalent to -vET

-b, --number-nonblank number nonempty output lines

...



Getting Help with Unix Commands

• Most Unix commands have a help option, which will provide a brief 
description of the command – along with a list of options:

$ ls --help
Usage: ls [OPTION]... [FILE]...
List information about the FILEs (the current directory by 
default).
Sort entries alphabetically if none of -cftuvSUX nor --sort.

Mandatory arguments to long options are mandatory for short options 
too.
-a, --all                  do not ignore entries starting with .
-A, --almost-all           do not list implied . and ..

...

• Depending on the command, you can use -h, or --help, or both to get 
help with it



The System Manual

• Unix comes with two extensive documentation systems

• The first system are the man pages

• To use these pages type man, followed by the name of the command: 

man ls

• When you run man you will see a series of help pages...

o Hit the Enter key to move down one line

o Hit the spacebar to move to the next screen

o To exit, type q

• You can move up and down through the man pages by pressing the up
and down arrow keys



The System Manual

• The man pages are often very technical

• They can be quite intimidating, but you don't have to read all of 
the page

• You only have to read enough to answer your question

o You might read the first few lines which show the arguments expected

o Then you can skim down the list of options

o Learn the art of reading just enough to get the job done

o This has been called this "guerrilla reading"

o Go in, get what you need, and get out



The info System

• Linux also provides an entirely different documentation system

• This system is menu-based and was created by the GNU project

• To enter this system use the info command

• You can follow info with the name of a command

• The up and down arrow keys will move up and down -- one line 
at a time

• The spacebar moves you down one screen's height



The info System

• The info system uses links

•Move down to a line with an asterisk * and hit Enter

• This will take you to a new page

• Type h for help

• Type q to quit

• For any utility created by the GNU project, 
the info documents are superior to the man pages



Searching for a Keyword with apropos

•man pages are useful, but only if you know the name of a 
command

•What if you don't know the name of a command?

• For this situation apropos was created

• Follow apropos with a key word, and it will give you a list 
of man page topics

• apropos takes the word you give it as an argument and 
searches the short description line at the top of all man pages 
for a match



Searching for a Keyword with apropos

• Example:

$ apropos who
at.allow (5)         - determine who can submit jobs via at or batch
at.deny (5)          - determine who can submit jobs via at or batch
bsd-from (1)         - print names of those who have sent mail
from (1)             - print names of those who have sent mail
rwho (1)             - who is logged in on local machines
rwhod (8)            - system status server
w (1)                - Show who is logged on and what they are doing.
w.procps (1)         - Show who is logged on and what they are doing.
who (1)              - show who is logged on
whoami (1)           - print effective userid
whom (1)             - report to whom a message would go



Homework Directories

•When you first log in, you will be in your home directory

•You homework needs to go into another directory

• Each of you should have a class directory, it244, in your 
home directory

• For each homework assignment you must create a new 
homework directory inside the hw directory inside 
your it244 directory



Homework Directories

• I use a shell script to collect your homework

• If you put your homework in a different place, the script will 
fail

•Grading homework takes a lot of time

•Having to search for your work makes the grading take 
longer

• If you put your homework somewhere else you will lose 10 
percent of the possible total



Using script in Homework Assignments

•Homework 2 is your first homework assignment using Unix

•Most of the assignment asks you to perform certain tasks on 
the Linux machine

•You have to use the script command to create a record of 
what you have done

• I will collect this file and use it to give you a score



Using script in Homework Assignments

•Your script session does not have to be perfect

• If you make a mistake while running script, simply try again

• But it is best for me if you practice what you need to do 
before you use script

• If you don't, the typescript files can become very long, which 
can make the grading take much more time than it has to

• So, please, run through the homework first without 
using script



Using script in Homework Assignments

• As you complete each step of the homework, you can cut and 
paste the Unix command into a text file

• Then when you are sure that you have everything working, 
run script copying command from your text file

• This will save me a lot of time

• Please DO NOT use an editor, like nano, while running script

• The control key sequences mess up the output

• This makes it hard for me to read and grade your homework


