
Essential Linux Shell Commands

Special Characters

Quoting and Escaping

Change Directory

Show Current Directory

List Directory Contents

Working with Files

Working with Directories

Special Characters

• There are some characters that have special meaning in Unix

• They should never be used in file or directory names

• They are

& : | * ? ' " [] () $ < > { } # / \ ! ~

• Three other characters, called whitespace, are also special

• The whitespace characters are

o Space

o Tab

o Newline

Special Characters

• The Space and Tab characters are used to separate words on the
command line

• They separate the command from its options and its arguments

• The newline character is what you get when you press Enter on a PC
or Return on a Mac

• The newline character tells the shell you are done typing a command
and the shell should run the command you just entered

• When the shell sees a newline it executes whatever is on the command
line

Quoting and Escaping

• If you need to use a special character on the command line you must
do two one of two things

o Use quotes

o Escape the special character

• Escaping means putting a backslash, \ in front of a special character
to turn off its special meaning

• You can put backslash character, \ just before the character

• The backslash must come immediately in front of the special
character

Quoting and Escaping
• The backslash turns off the special meaning of the newline, which is normally to

run the command you have typed
$ cat foo.txt
foo
bar
bletch

$ cat > \
> foo.txt
foo
bar
bletch

• The backslash turned off the special meaning of the Enter key

• The shell did not try to execute the command line

• Instead, it waited for you to finish the command on the next line

• The second greater than symbol, > is the shell saying it is waiting for more of the
command

Quoting and Escaping

• What if you have many characters to escape?

• You could put a backslash before each one

• But, it is probably better to use quotes
$ echo >>
-bash: syntax error near unexpected token `newline'
$ echo \>\>
>>
$ echo '>>'
>>

• There are two types of quotes

o Single quotes - ' '

o Double quotes - " "

• They have slightly different meanings, but you don't need to worry about the
difference for now

cd - Change Directory

• cd (change directory) changes your current directory

• You use cd to move from one directory to another

cd DIRECTORY_NAME

• If you use cd with the name of a directory, it moves you to that directory

• If you use cd without an argument, it takes you to your home directory

• The home directory is the directory you are in when you first log in to Unix

• To go up one directory, use .. as the argument for cd

cd ..

pwd - Show Your Current Directory

• pwd (print working directory) displays your current directory

pwd

• In the beginning, use pwd every time you use cd

• This will keep you from getting lost

ls - List the Contents of a Directory

• ls (list) is one of the most basic Unix commands

• It shows you the files and directories inside a directory

• The command line is not a GUI

• It is easy to lose track of where you are

• When this happens, certain things will not work as you would
expect

ls - List the Contents of a Directory

• When ls is used without an argument, it lists the contents of your
current directory

• When you use ls followed by the name of a directory, it lists the
contents of that directory

ls DIRECTORY

• When you use ls followed by the name of a file, it simply displays the
file name

ls - List the Contents of a Directory

• When used with the -a (for all) option, ls will list all files --
including those whose names begin with a .

• Any file whose name begins with a . will not show up when
you use ls, unless you use the -a option

• These "invisible" files are configuration files

• Under normal circumstances, you pay no attention to them

• We'll discuss these files later in the course

ls - List the Contents of a Directory

• Another useful option to ls is –l which displays a "long" listing
$ ls -l
total 20
-rw-rw-r-- 1 ghoffmn 103 Sep 11 14:34 basic.css
-rw-r--r-- 1 ghoffmn 3560 Aug 29 13:30
emacs_cheat_sheet.html
-rw-r--r-- 1 ghoffmn 701 Aug 29 13:30 index.html
drwxr-xr-x 6 ghoffmn 512 Sep 15 14:11 it_244
-rw-r--r-- 1 ghoffmn 6831 Aug 29 13:30 tips.html
-rw-r--r-- 1 ghoffmn 6052 Aug 29 13:30
unix_cheat_sheet.html

• (NOTE: This is the lowercase letter l, not the number 1. Do not get them
confused!)

• We'll talk about this more when we discuss permissions

cat - Print the Contents of a File

• cat (concatenate) displays the contents of a file

$ cat foo.txt

foo

bar

blecth

cat - Print the Contents of a File

• When used with the -n option cat displays line numbers

$ cat -n lines.txt
1 line 1
2 line 2
3 line 3
4 line 4
5 line 5
6 line 6
7 line 7
8 line 8
9 line 9
10 line 10

cat - Print the Contents of a File

• If you run cat on a long file, the contents of the file will pass
by too quickly to read

• To view long files, you should use a paging program

• Paging programs, like more and less, show the content of a
file one screenful at a time

• You can navigate using arrows, the space bar, and other keys
on your keyboard

• I'll discuss them more in a future class

rm - Delete a File

• rm (remove) deletes a file

rm FILENAME

• rm does not ask you if you are sure before deleting the file

• There is no undelete feature in Unix

• Deleted files cannot be recovered, if not backed up

• Don't delete a file, unless you are sure you won't need it

rm - Delete a File

• To remove all the files in a directory use

rm *

• Be careful when using * with rm

• It will delete everything, and there is no way to get back what was
deleted

rm - Delete a File

• If you run rm with the -i option, it will ask you before deleting each
file

rm -i foo.txt

rm: remove regular file `foo.txt'? y [Enter]

• It's good idea to use this option when running rm *

• rm cannot be used on a directory -- unless you use the -f or "force"
option

Directories

• mkdir - Create a Directory

o mkdir (make directory) creates a directory

mkdir DIRECTORY_NAME

o The directory will be created in the current directory, unless you specify
another location

• rmdir - Delete a Directory

o rmdir (remove directory) deletes a directory

rmdir DIRECTORY_NAME

o rmdir will not work on a directory, unless the directory is empty

cp - Copy Files

• cp (copy) makes a copy of a file or a directory

• cp takes two arguments

o The first argument is the source - the file or directory to be copied

o The second argument is either the new filename, if you are making a copy in
the same directory or the directory into which the copy will go

cp FILENAME NEW_FILENAME_OR_DIRECTORY

• cp can copy an entire directory -- when used with the -r (for recursive)
option

mv - Move a File or Directory

• mv (move) is a command that does two different things

• It can change the location of a file or directory

mv FILENAME_OR_DIRECTORY_NAME NEW_DIRECTORY

• It can also change the name of a file or directory

mv FILE_OR_DIR_NAME NEW_FILE_OR_DIR_NAME

• In either case, mv takes two arguments

mv - Move a File or Directory

• When used to move something, the first argument is thing to be moved, and
the second argument is the new location

$ ls
foo.txt it244 work

$ ls work

$ mv foo.txt work

$ ls
it244 work

$ ls work
foo.txt

mv - Move a File or Directory

• When changing the name of a file or directory, the first argument is the
old name, and the second is the new name

$ ls

foo.txt hold it244 work

$ mv foo.txt bar.txt

$ ls

bar.txt hold it244 work

