
echo - Print Text to the Terminal

• echo simply prints whatever comes after it to the
terminal
$ echo Hello world!

Hello world!

• It's used a lot in shell scripts to prompt for input or to
let the user know what is happening

• It is also useful for checking the value of a variable
$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin
:/sbin:/bin:/usr/games:::

echo - Print Text to the Terminal

• When using echo with a variable you must precede the

variable name with a dollar sign, $
• When echo is used with the -n option it does not

advance to the next line

• This is useful in writing prompts inside shell scripts

hostname - Print the Name of Your Host
Machine

• Every machine on the nextwork has a name

• This name is known as the hostname

• The hostname command prints the network name of
the machine you are using

$ hostname

vm75

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html

hostname - Print the Name of Your Host
Machine

• it244a is a virtual machine that calls itself vm75

• When used with the -i option hostname will print the
IP address of the host machine

$ hostname -i

192.168.106.240

Pagers - View a File One Screen at a Time

• Pagers show the contents of a file one screenful at a time

• Unix provides two paging programs, more and less

• less is an improved version of more

oThe name is an example of dry Unix humor

o It's not more -- it's less

oBoth allow you to advance to the next screen by hitting the
space bar

oTo move down one line, hit Enter

oTo get help, type "h"

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html

Pagers - View a File One Screen at a Time

• less has more features

• In less, you can use the arrow keys to move up and
down one line

• When more gets to the end of a file, hitting the Space
bar will bring you back to the command line

• When you get to the end of a file in less, you must
type "q" to quit

Pathname Completion

• When typing a long file name it is easy to make a mistake

• Unix helps with a feature called pathname completion

• We'll talk more about pathnames in a future class

• It works with directories as well as files

• You type a few characters, then hit the Tab key, and Unix
will supply the rest....

•but only if there is only one file or directory that
matches what you have started to type

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html

Pathname Completion

• If there is more than one match Unix will supply as
much of the name as it can and then beep

• If there is no match, it will also beep

• In the Bash shell, if you hit Tab twice you will see a
list of all possible matches to what you have typed

grep - Finding Strings inside Files

• grep (get regular expression) is a utility which searches a
text file for lines containing a specific string

• A string is a collection of characters that may, or may not,
be a word

• grep uses the following format

grep [-OPTIONS] STRING FILE ...

• The words in capital letters are things that you must supply

• Anything enclosed in square brackets is optional

• Here is an example of how grep can be used...

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html

grep - Finding Strings inside Files

• Say we have a text file
$ cat red_sox.txt
2011-07-02 Red Sox @ Astros Win 7-5
2011-07-03 Red Sox @ Astros Win 2-1
2011-07-04 Red Sox vs Blue Jays Loss 7-9
2011-07-05 Red Sox vs Blue Jays Win 3-2
2011-07-06 Red Sox vs Blue Jays Win 6-4
2011-07-07 Red Sox vs Orioles Win 10-4
2011-07-08 Red Sox vs Orioles Win 10-3
2011-07-09 Red Sox vs Orioles Win 4-0
2011-07-10 Red Sox vs Orioles Win 8-6
2011-07-15 Red Sox @ Rays Loss 6-9
2011-07-16 Red Sox @ Rays Win 9-5
2011-07-17 Red Sox @ Rays Win 1-0
...

grep - Finding Strings inside Files

• ...and we want to find all the games the Sox won; we
can use grep

$ grep Win red_sox.txt
2011-07-02 Red Sox @ Astros Win 7-5
2011-07-03 Red Sox @ Astros Win 2-1
2011-07-05 Red Sox vs Blue Jays Win 3-2
2011-07-06 Red Sox vs Blue Jays Win 6-4
2011-07-07 Red Sox vs Orioles Win 10-4
2011-07-08 Red Sox vs Orioles Win 10-3
2011-07-09 Red Sox vs Orioles Win 4-0
2011-07-10 Red Sox vs Orioles Win 8-6
2011-07-16 Red Sox @ Rays Win 9-5
2011-07-17 Red Sox @ Rays Win 1-0
...

grep - Finding Strings inside Files
• grep is case sensitive, unless you run it with the -i option
$ grep win red_sox.txt

• (NOTHING!)
$ grep -i win red_sox.txt

2011-07-02 Red Sox @ Astros Win 7-5

2011-07-03 Red Sox @ Astros Win 2-1

2011-07-05 Red Sox vs Blue Jays Win 3-2

2011-07-06 Red Sox vs Blue Jays Win 6-4

2011-07-07 Red Sox vs Orioles Win 10-4

2011-07-08 Red Sox vs Orioles Win 10-3

2011-07-09 Red Sox vs Orioles Win 4-0

2011-07-10 Red Sox vs Orioles Win 8-6

2011-07-16 Red Sox @ Rays Win 9-5

2011-07-17 Red Sox @ Rays Win 1-0

...

grep - Finding Strings inside Files

• The first command failed because I spelled "win" with
a lowercase "w"

• If your search string contains one of Unix's special
characters

• You must use a backslash to escape it or use quotes

• grep -r will search recursively through a directory
looking at all files in the directory and all the
subdirectories

grep - Finding Strings inside Files

• grep -v returns all lines that do not match the
search string

$ grep -v Win red_sox.txt

2011-07-04 Red Sox vs Blue Jays Loss 7-9

2011-07-15 Red Sox @ Rays Loss 6-9

2011-07-19 Red Sox @ Orioles Loss 2-6

2011-07-25 Red Sox vs Royals Loss 1-3

2011-07-28 Red Sox vs Royals Loss 3-4

2011-07-29 Red Sox @ White Sox Loss 1-3

grep - Finding Strings inside Files

• There are many more useful options for grep which
can be found on the man page

• I use grep on an almost daily basis

• For example, let's say you want to add a field to a
database table

• You could keep all my SQL code in text files

• Then, you can use grep to find every file that
references that table

head - View the Top of a File

• Sometimes, the first few lines of a file are all you need
to see

• head displays the first 10 lines of a file
$ head red_sox.txt
2011-07-02 Red Sox @ Astros Win 7-5
2011-07-03 Red Sox @ Astros Win 2-1
2011-07-04 Red Sox vs Blue Jays Loss 7-9
2011-07-05 Red Sox vs Blue Jays Win 3-2
2011-07-06 Red Sox vs Blue Jays Win 6-4
2011-07-07 Red Sox vs Orioles Win 10-4
2011-07-08 Red Sox vs Orioles Win 10-3
2011-07-09 Red Sox vs Orioles Win 4-0
2011-07-10 Red Sox vs Orioles Win 8-6
2011-07-15 Red Sox @ Rays Loss 6-9

head - View the Top of a File

• If you give head a number as an option it will display that number of
lines

$ head -5 red_sox.txt

2011-07-02 Red Sox @ Astros Win 7-5

2011-07-03 Red Sox @ Astros Win 2-1

2011-07-04 Red Sox vs Blue Jays Loss 7-9

2011-07-05 Red Sox vs Blue Jays Win 3-2

2011-07-06 Red Sox vs Blue Jays Win 6-4

tail - View the Bottom of a File

• tail is like head except it prints the last 10 lines of a file

$ tail red_sox.txt

2011-07-22 Red Sox vs Mariners Win 7-4

2011-07-23 Red Sox vs Mariners Win 3-1

2011-07-24 Red Sox vs Mariners Win 12-8

2011-07-25 Red Sox vs Royals Loss 1-3

2011-07-26 Red Sox vs Royals Win 13-9

2011-07-27 Red Sox vs Royals Win 12-5

2011-07-28 Red Sox vs Royals Loss 3-4

2011-07-29 Red Sox @ White Sox Loss 1-3

2011-07-30 Red Sox @ White Sox Win 10-2

2011-07-31 Red Sox @ White Sox Win 5-3

tail - View the Bottom of a File

• You can give tail a number as an option to specify the number of lines printed

$ tail -4 red_sox.txt

2011-07-28 Red Sox vs Royals Loss 3-4

2011-07-29 Red Sox @ White Sox Loss 1-3

2011-07-30 Red Sox @ White Sox Win 10-2

2011-07-31 Red Sox @ White Sox Win 5-3

• tail is especially useful when looking at log files

o Log files are text files that record significant events

o They are created automatically by programs that provide services like a web server

o The most recent entries are at the end of file and those are usually what you want to
see when you are trying to solve a problem

sort - Print a File in Sorted Order

• Unix has a number of utilities for manipulating text files

• sort prints the contents of a file with the lines sorted

$ cat fruit.txt

grapes

pears

oranges

cranberries

apples

melons

blueberries

sort - Print a File in Sorted Order

• Now, let’s sort those lines...

$ sort fruit.txt

apples

blueberries

cranberries

grapes

melons

oranges

pears

sort - Print a File in Sorted Order

• sort looks at the beginning of each line of a file and sorts
the line based on these characters

• sort does not change the file itself

• It simply prints the sorted contents of the file to the terminal

• sort has many useful options, which you can find in
the man pages:

onumeric sort

ocase-insensitive

ounique detection

sort - Print a File in Sorted Order

• sort -r (reverse) will sort the file in reverse alphabetical
order

$ sort -r fruit.txt

pears

oranges

melons

grapes

cranberries

blueberries

apples

sort - Print a File in Sorted Order

• sort -n (number) will sort a file by number ...

• so a line starting with "2" will appear before a line starting with
"11"

$ cat numbers.txt

11

1

17

2

3

15

...

4

5

14

6

13

7

8

9

10

12

16

18

19

20

sort - Print a File in Sorted Order

$ sort numbers.txt

1

10

11

12

13

14

15

16

17

...

18

19

2

20

3

4

5

6

7

8

9

sort - Print a File in Sorted Order

$ sort -n numbers.txt

1

2

3

4

5

6

...

• sort does not change the file on which it is run; it merely
prints the contents of the file in sorted order

7

8

9

10

11

12

13

14

15

16

17

18

19

20

uniq - Eliminate Duplicate Lines

• uniq prints a text file, removing adjacent identical lines

$ cat numbers2.txt

4

5

6

7

8

...

9

10

11

11

11

12

13

14

15

16

17

18

19

20

uniq - Eliminate Duplicate Lines

$ uniq numbers2.txt

4

5

6

7

8

9

• Note, the duplicate lines must be adjacent for uniq to work

• For this reason, it's good to use sort along with uniq

• uniq -i ignores case when looking for duplicate lines

10

11

12

13

14

15

15

16

17

18

19

20

diff - Differences between Files

• diff compares two files and displays the lines that are different

• The default output format of diff is confusing

$ cat numbers1.txt

1

2

3

4

5

6

7

...

8

9

10

11

12

13

14

15

16

17

18

19

20

diff - Differences between Files

$ cat numbers2.txt

4

5

6

7

8

9

10

11

11

...

11

12

13

14

15

16

17

18

19

20

diff - Differences between Files

$ diff numbers1.txt numbers2.txt

1,3d0

< 1

< 2

< 3

10a8,9

> 11

> 11

• diff was created for use with the Unix patch utility, which creates a
new version of a file from the changes given by diff

• This output was never meant to be read by people!

diff - Differences between Files

• The most readable output is obtained by using the -y option

$ diff -y numbers1.txt numbers2.txt

1 <

2 <

3 <

4 4

5 5

6 6

7 7

8 8

9 9

• diff -i ignores case when looking for differences!

10 10

> 11

> 11

11 11

12 12

13 13

14 14

15 15

16 16

...

