
Leveraging Linux Capabilities

• The Shell Prompt

• file Command

• Pipes

• date Command

• Text File Conversion

• File Compression/Storage

• Getting File Information

• Getting User Information

The Shell Prompt

• In the last class I mentioned shell variables

• We'll talk a lot more about them in a few weeks

• But right now I'd like to say a few words about one particular
variable

• PS1 is the variable that determines your Unix prompt

• This variable can be customized in many ways to provide all sort
of useful information

• By default PS1 tells you three things
o Your Unix username

o The machine to which you are connected

o The location of your current directory

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html

The Shell Prompt

• Some of you may have noticed that my prompt looks different
from yours

• That's because I have customized the value of PS1 for my account

• But before I did this, my prompt looked something like this

ckelly@vm75:~/it244$

• Prompt parts:
o The characters before the @ show my Unix username

o The characters between @ and : are the hostname of the machine I am
using

o The characters from : to $ show my current directory

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html

The Shell Prompt

• The ~ symbol indicates your home directory

• We'll talk more about this in a future class

• So when I got this prompt, I was in the directory

/home/ckelly/it244/work

• If you look carefully at your prompt, you can always see
where you are in the Unix filesystem

file - Show the File Type

• The file utility takes an argument of one or more files and shows
the type of each:

$ file *
bin: directory
cars.txt: ASCII text
cmds: directory
dead.letter: ASCII news text
downloads: directory
exercises_it244: directory
f11_it244_class_web: directory
hw_it244: directory
it244: symbolic link to
`/courses/it244/s12/ghoffmn/'
java: directory

Pipes - Stringing Programs Together

• Pipes are one of the most powerful features of Unix

• A pipe takes the output of one Unix command and feeds it
into the input of another

• Using pipes you can string programs together so they can
perform a task that none of them could do separately

• A pipe consists of two or more Unix commands each one

separated from the one that came before by the | symbol

• Using a pipe, we can build up a string of commands to get
exactly what we want

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html

Pipes - Stringing Programs Together

• Let's say we want to find all Red Sox wins against the Rays
sorted in reverse order by date from the following file

$ cat red_sox.txt

2011-07-02 Red Sox @ Astros Win 7-5

2011-07-03 Red Sox @ Astros Win 2-1

2011-07-04 Red Sox vs Blue Jays Loss 7-9

2011-07-05 Red Sox vs Blue Jays Win 3-2

2011-07-06 Red Sox vs Blue Jays Win 6-4

2011-07-07 Red Sox vs Orioles Win 10-4

2011-07-08 Red Sox vs Orioles Win 10-3

2011-07-09 Red Sox vs Orioles Win 4-0

2011-07-10 Red Sox vs Orioles Win 8-6

2011-07-15 Red Sox @ Rays Loss 6-9

2011-07-16 Red Sox @ Rays Win 9-5

2011-07-17 Red Sox @ Rays Win 1-0

...

2011-07-17 Red Sox @ Rays Win 1-0

2011-07-18 Red Sox @ Orioles Win 15-10

2011-07-19 Red Sox @ Orioles Loss 2-6

2011-07-20 Red Sox @ Orioles Win 4-0

2011-07-22 Red Sox vs Mariners Win 7-4

2011-07-23 Red Sox vs Mariners Win 3-1

2011-07-24 Red Sox vs Mariners Win 12-8

2011-07-25 Red Sox vs Royals Loss 1-3

2011-07-26 Red Sox vs Royals Win 13-9

2011-07-27 Red Sox vs Royals Win 12-5

2011-07-28 Red Sox vs Royals Loss 3-4

2011-07-29 Red Sox @ White Sox Loss 1-3

2011-07-30 Red Sox @ White Sox Win 10-2

2011-07-31 Red Sox @ White Sox Win 5-3

Pipes - Stringing Programs Together

• First, let's find all games against the Rays
$ grep Rays red_sox.txt

2011-07-15 Red Sox @ Rays Loss 6-9

2011-07-16 Red Sox @ Rays Win 9-5

2011-07-17 Red Sox @ Rays Win 1-0

• Now let's feed this into another command that selects the games
the Sox won
$ grep Rays red_sox.txt | grep Win

2011-07-16 Red Sox @ Rays Win 9-5

2011-07-17 Red Sox @ Rays Win 1-0

Pipes - Stringing Programs Together

• Now we can use sort to get the results in the order we want

$ grep Rays red_sox.txt | grep Win | sort -r

2011-07-17 Red Sox @ Rays Win 1-0

2011-07-16 Red Sox @ Rays Win 9-5

• The Unix tool philosophy is:
o simple programs that...

o ...do one thing well

• Pipes are essential in making this philosophy work

• As we progress through this course, you will have many
opportunities to use pipes

date - Get the Date and Time

• date displays the time and date

$ date

Tue Aug 7 20:02:48 EDT 2012

• You can change the way the date is displayed by
following date with a + and a format string

$ date +"%Y-%m-%d %r"

2012-08-07 08:19:44 PM

• The format string consists mostly of pairs of character pairs
the first character of which is a %

date - Get the Date and Time

• In the string on the previous slide, %Y stands for the four
digit year

• To get more information on the various formatting options:

info date

• Now move the cursor down to the line that reads
* Date conversion specifiers:: %[aAbBcCdDeFgGhjmuUVwWxyY]

• Then hit the Enter key

Text File Conversion Programs

• Text files on Unix differ from those on Windows machines by
the characters used to mark the end of a line

• There are two packages that provide software to convert
between these two formats

otofrodos

ounix2dos

• We won't be using either of them in this course but you
should know about them

Text File Conversion Programs

• The tofrodos package provides:

otodos to convert Unix files to Windows format, and...

ofromdos to go the other way

• The unix2dos package uses:

ounix2dos to convert Unix text files to Windows text, and...

odos2unix to go the other way

• However, you will not be expected to know this for a
quiz or exam

Compressing Files with bzip2

• On the Internet there are many files which are free for
the taking

• Many of these files are huge and copying them to a
machine can take a long time

• To speed up the process, big files are usually
compressed

• Compression utilities are used to do this

• bzip2 is one such utility

Compressing Files with bzip2

• It achieves the highest compression ratio of all common
compression utilities

• You run bzip2 like this

bzip2 FILENAME

• bzip2 compresses the file creating a new file with the
extension .bz2 and deletes the original file

• If you need to keep the original file run bzip2 with the -k (for
keep) option

Compressing Files with bzip2

• To decompress a file created by bzip2 use bunzip2 like
this

bunzip2 FILENAME.bz2

• bunzip2 will:
odecompress the .bz2 file and...

o ...create a new file with the .bz2 extension removed

• The compressed file is also deleted

Compressing Files with bzip2

• A file that bunzip2 has compressed is unreadable

• If you want to look at the contents of a .bz2
compressed file without uncompressing it use bzcat
obzcat, will print the uncompressed contents of a file to the

terminal

oIt does not alter the original, compressed file

gzip - the GNU Compression Utility

• The GNU project created gzip to compress files

• It is older, and less efficient, than bzip2

• But many open source packages are compressed with
this program

• It is similar in operation to bzip2

• The compressed files gzip creates have a .gz extension

gzip - the GNU Compression Utility

• To display the contents of a .gz file without converting
it, use zcat

• To decompress a gzipped file, use gunzip

• These utilities have nothing to do with the zip and
unzip programs that are frequently used on Wintel
machines
o(Tip: What does "Wintel" mean? Look it up!)

tar - Packaging Files for Transfer or Storage

• Most software packages consist of many files

• But...to distribute the package efficiently you really want to
turn these many files into a single file

• This also needs to be done when backing up a directory

• tar (tape archive) is the Unix utility used for this purpose

• tar does not compress files
o It stuffs multiple files into a single file, often called a tarball

o tar is usually used along with a compression program

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html

tar - Packaging Files for Transfer or Storage

• First you run tar to create a single file then you run another utility to
compress the file

• You also use tar to unpack the files

• You run tar with different options to pack, or unpack, a tarball

• To "tar up" a set of files, run

tar -cvf ARCHIVE_NAME.tar DIRECTORY_NAME

• The options stand for create, verbose, file
o The .tar extension is a convention

o Though you do not have to use this extension, it would be foolish not to

tar - Packaging Files for Transfer or Storage

• To see the files contained in a tar file without unpacking them
use

tar -tvf ARCHIVE_FILE

• To unpack a tarball use

tar -xvf ARCHIVE_FILE

• The x option stands for extract

• Normally, you create a tarball and then run a compression
program on the archive file

tar - Packaging Files for Transfer or Storage

• If bzip2 is used for compression the new file will often have
a .tar.bz2 or .tbz extension

• If gzip is used the extensions usually are .tar.gz, .tgz, or
sometimes simply .gz

• Again, these are simply conventions
oThat said, don't violate these conventions unless you have

a very good reason

oLife is complicated enough as it is

oPlus, you don't want to create confusion for others

which - Finding a Program File

• Unix commands are programs

owhich exist as binary files

ocontaining numeric codes that the computer's processor
understands

o that are located somewhere in the filesystem

• You can use the Unix utility which to find the exact location
of any binary program file

which - Finding a Program File

• To find the location of the tar program file we would run

$ which tar

/bin/tar

• which shows that the executable file for tar is located in
the /bin directory

owhich uses the PATH system variable to find the location
of the file

oWe'll discuss PATH in a future class

whereis - Finding Files Used by a Program

• whereis is another program that can be used to locate
program files

• whereis takes an approach different from that of which

• Every Unix or Linux system has certain standard
places where it stores programs and the files they use
owhereis searches these locations

oIt returns a list of all files associated with a program

oThe list gives the name of the file as well as it's location

whereis - Finding Files Used by a
Program

• When we run whereis on tar, we get more information
than which returned

$ whereis tar

tar: /bin/tar /usr/include/tar.h /usr/share/man/man1/tar.1.gz

• We get a fuller view of the command:
oThe first entry is the executable file /bin/tar

oThe second entry is a header file /usr/include/tar.h

oThe program needs the header file to get certain information

oThe third entry is the file that man uses to provide information
about tar

whereis - Finding Files Used by a Program

• A word of caution about using which and whereis

• Some commands are actually built into the shell itself

• These command are called built-ins and we will talk about
them in a future class

• If you run which or whereis on these programs you will get
nothing back

$ which cd

$

locate - Search for Any File

• which and whereis only work on programs

• locate can be used to find any file

• You don't need to know the full name of a file to use locate

• locate will search on a partial file name
$ locate foot

/etc/update-motd.d/99-footer

/usr/share/doc/java-common/debian-java-faq/footnotes.html

/usr/share/emacs/23.3/lisp/mail/footnote.elc

/usr/share/emacs/23.3/lisp/org/org-footnote.elc

/usr/share/libparse-debianchangelog-perl/footer.tmpl

/usr/share/xml-core/catalog.footer

...

locate - sample output continued
...

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-footbridge

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-footbridge/Kconfig

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-footbridge/Makefile

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-footbridge/Makefile.boot

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-footbridge/include

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-footbridge/include/mach

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-footbridge/include/mach/debug-macro.S

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-footbridge/include/mach/entry-macro.S

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-footbridge/include/mach/hardware.h

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-footbridge/include/mach/io.h

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-footbridge/include/mach/irqs.h

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-footbridge/include/mach/isa-dma.h

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-footbridge/include/mach/memory.h

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-footbridge/include/mach/system.h

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-footbridge/include/mach/timex.h

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-footbridge/include/mach/uncompress.h

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-footbridge/include/mach/vmalloc.h

locate - Search for Any File

• locate does not actually search the file system itself
oThat would take too long

oInstead, it uses a database of all files on the system
 This database is created by another program updatedb

 updatedb is usually run automatically in the background to
update the database

• For some reason, in the past, the locate command
only worked on it244a

• It may work on others, now

find - Search for Files Using Different Criteria

• The most powerful Linux/Unix command for finding files is find

• Unfortunately, it's power makes it harder to use that locate

• find can be used to search for a file based on many different
things such as:
o The name of the file

o The last time the file was used

o The last time the file was changed

o The access permission of the file

• An in-depth discussion of find is beyond the scope of this course,
but since locate may not always be available on the UMB
machines, I need to talk a bit about it

find - Search for Files Using Different Criteria

• The simplest way to use find is searching for files by name

• You do this using the following format

find DIRECTORY -name FILENAME

• Here is an example

$ find /home/ghoffmn -name red_sox.txt

/home/ghoffmn/course_files/it244_files/red_sox.txt

/home/ghoffmn/course_files/it441_files/red_sox.txt

• Unlike locate, the find command will not accept a partial file name

$ find /home/ghoffmn -name red

$

find - Search for Files Using Different Criteria

• You can get the same affect by using the * character but
since * has special meaning on the command line you have
to escape it

$ find /home/ghoffmn -name memo.*

/home/ghoffmn/memo.bak

/home/ghoffmn/memo.txt

/home/ghoffmn/tmp/memo.bak

/home/ghoffmn/tmp/memo.txt

/home/ghoffmn/tmp/memo.backup

who - See Users Logged On

• who prints a list of all users currently logged on to the
machine

• who also provides information about each user's login
session
o It shows the time they logged in

o It also shows the machine from which the user connected

$ who

ghoffmn pts/0 2012-08-12 13:41 (dsl092-066-161.bos1.dsl.speakeasy.net)

rouilj pts/1 2012-08-12 04:25 (pool-74-104-161-

40.bstnma.fios.verizon.net)

eb pts/2 2012-08-12 08:19 (pool-96-237-251-

11.bstnma.fios.verizon.net)

who - See Users Logged On

• who am i will show the user who is logged into a specific
terminal

• This can be useful if you find an unattended terminal

• You can run the same command without the spaces but it
gives less information

$ whoami

ghoffmn

$ who am i

ghoffmn pts/0 2012-08-12 13:41 (dsl092-066-161.bos1.dsl.speakeasy.net)

finger - Get information on Users

• finger provides information about Unix accounts:
$ finger ghoffmn

Login: ghoffmn Name: Glenn Hoffman

Directory: /home/ghoffmn Shell: /bin/bash

On since Wed Sep 17 16:09 (EDT) on pts/1 from dsl092-066-

161.bos1.dsl.speakeasy.net

1 second idle

Mail forwarded to glennhoffman@mac.com

Mail last read Thu Sep 4 15:12 2014 (EDT)

Plan:

Office: McCormack M-3-607 Fall 2014

Office Hours: Tuesday & Thursday, 10:00 - 12:00 PM and by appointment

Classes:

IT 341-2 Introduction to System Administration TuTh 12:30-1:45 S3-148

(IT Lab)

IT 244-1 Introduction to Linux/Unix TuTh 2:00-3:15 S3-028

(Web Lab)

...

finger - Get information on Users

• finger, like mv, has two functions

• When used without an argument finger shows every user
currently logged in

$ finger

Login Name Tty Idle Login Time

Office Office Phone

ghoffmn Glenn Hoffman pts/0 Aug 18 11:13

(dsl092-066-161.bos1.dsl.speakeasy.net)

rouilj John P. Rouillard pts/1 4:34 Aug 18 06:44

(pool-74-104-161-40.bstnma.fios.verizon.net)

ubuntu Ubuntu Dummy *tty1 14d Aug 4 04:53

finger - Get information on Users

• You can also use a last name with finger
$ finger hoffman

Login: ghoffmn Name: Glenn Hoffman

Directory: /home/ghoffmn Shell: /bin/bash

On since Wed Sep 17 16:09 (EDT) on pts/1 from dsl092-066-161.bos1.dsl.speakeasy.net

1 second idle

Mail forwarded to glennhoffman@mac.com

Mail last read Thu Sep 4 15:12 2014 (EDT)

Plan:

Office: McCormack M-3-607 Fall 2014

Office Hours: Tuesday & Thursday, 10:00 - 12:00 PM and by appointment

Classes:

IT 341-2 Introduction to System Administration TuTh 12:30-1:45 S3-148 (IT Lab)

...

Login: it244gh Name: Dummy for Glenn Hoffman

Directory: /home/it244gh Shell: /users/nologin

Never logged in.

Mail forwarded to glennhoffman@mac.com

No mail.

Plan:

This account is a test account for Glenn Hoffman teaching it244

finger - Get information on Users

• Or a first name
$ finger hoffman

Login: ghoffmn Name: Glenn Hoffman

Directory: /home/ghoffmn Shell: /bin/bash

On since Wed Sep 17 16:09 (EDT) on pts/1 from dsl092-066-161.bos1.dsl.speakeasy.net

1 second idle

Mail forwarded to glennhoffman@mac.com

Mail last read Thu Sep 4 15:12 2014 (EDT)

Plan:

Office: McCormack M-3-607 Fall 2014

Office Hours: Tuesday & Thursday, 10:00 - 12:00 PM and by appointment

Classes:

IT 341-2 Introduction to System Administration TuTh 12:30-1:45 S3-148 (IT Lab)

...

Login: it244gh Name: Dummy for Glenn Hoffman

Directory: /home/it244gh Shell: /users/nologin

Never logged in.

Mail forwarded to glennhoffman@mac.com

No mail.

Plan:

This account is a test account for Glenn Hoffman teaching it244

