
Permissions and Access Control

• Common Mistakes with Pipes

• Access Permissions

• Viewing Access Permissions

• The chmod Command

• Using chmod with Numeric Arguments

Common Mistakes with Pipes

• There are some mistakes that student seem to make each
semester

• Two of these mistakes involve pipes

• The first mistake is to use cat at the beginning of
a pipeline when it is not needed

o Students will sometimes use cat to create input that is then piped
into grep, sort, head or tail

o You don't need cat in a pipe with these commands because these
utilities can read a file directly without using cat

Common Mistakes with Pipes

• So instead of using

cat names.txt | grep Glenn

cat names.txt | sort

cat names.txt | head

cat names.txt | tail

• you should simply use

grep Glenn names.txt

sort names.txt

head names.txt

tail names.txt

• This mistake is harmless because it does not affect the result

Common Mistakes with Pipes

• However, the second mistake will cause an error

• The mistake is to use the filename given to the first command
in a pipeline to the following commands

• If I wanted to find all Red Sox games where the Sox won at
home I would write

grep Win red_sox.txt | grep vs

• I would not write

grep Win red_sox.txt | grep vs red_sox.txt # WRONG

Access Permissions

• All Unix files and directories have access permissions

• The access permissions allow the owner of a file or directory to
decide who gets to do what with the file or directory

• By default, the owner of a file or directory is the account that
created it

• Every file, directory or device on a Unix filesystem has three
types of permissions
o Read

o Write

o Execute

Access Permissions
• If you have read permission on a file, then you can look at the

data in the file

• You can run cat, more, or less on these files

• If you only have read permission on a file, then you cannot change it

• To change a file, you need write permission

• To run a program or script file, you must have execute
permission

• Each of the three types of permissions are set either on or off to three
classes of users
o The owner

o The group

o Every other Unix account

Access Permissions

• Every file or directory has an owner and a group assigned to it

• The account that created the file is usually the owner

• A group is a collection of Unix accounts

o Every account also has a default group that is assigned to every file or
directory that account creates

o This default group is created when the account is created

o Only a system administrator can add users to a group

o Every file or directory is assigned to a group, though the owner can change
this to another group

• The last class of users is any account that is not the owner or a
member of the group. Unix calls this class of users "other"

Viewing Access Permissions

• To view the permissions of a file or directory use ls -l

$ ls -l

total 5

-rw------- 1 it244gh libuuid 316 2011-09-20 21:32

dead.letter

lrwxrwxrwx 1 it244gh libuuid 34 2011-09-06 13:21 it244 ->

/courses/it244/s12/ghoffmn/it244gh

drwx------ 2 it244gh libuuid 512 2011-09-07 15:03 mail

drwxr-xr-x 2 it244gh libuuid 512 2011-09-25 15:48 test

-rw-r--r-- 1 it244gh libuuid 15 2011-09-20 16:18 test.txt

Viewing Access Permissions

• The first character indicates the type of file
o A dash, - , means an ordinary file

o The letter d indicates a directory

o The letter l (el) indicates a link which we will discuss in the next class

• The next three characters indicate the access permissions of the
owner
o r means the owner has read permission

o w means the owner has write (change) permission

o x means the owner has execute (run) permission

o - means the owner does not have the permission that would normally
appear in this column

Viewing Access Permissions

• The following three characters (after the owner permissions) indicate
the permissions of the group

• The last three characters are the permission of all other accounts

• The remaining columns provide file information:

o After the permissions is a number that indicates the number of links to the file
or directory

o The following column is the owner of the file or directory

o Next, you will find the group assigned to the file or directory

o Following this is the size of the file in bytes

o Next is the date and time the file or directory was created or last modified

o The last column is the name of the file or directory

chmod

• When a file is created, is has certain default permissions

$ touch test.txt

$ ls -l test.txt

-rw-r--r-- 1 it244gh libuuid 0 2012-09-17 14:40 test.txt

• To change these permissions you use the chmod (change

mode) command

• Only the owner of a file can do this

chmod

• chmod requires two arguments

oThe permissions you want to grant

oThe name of the file(s) or directory(s) which will be
changed

• The format for a call to chmod is

chmod PERMISSIONS FILES_OR_DIRECTORIES

• The permission can be specified in two ways
oSymbolically

oNumerically

chmod

• Symbolic form uses letters and the plus and minus signs

• The numeric form uses three digits running from 0 to 7
o I will teach the numeric format

o The numeric format is initially confusing

o But in my experience, it is the better way to go

• You are free to read about symbolic format in the textbook

• I will not deduct points for using this format in a test, quiz or
homework assignment...as long as you use it correctly!

Using chmod with Numeric Arguments

• The numeric permissions format uses three digits

• Each digit is a number from 0 to 7
oFirst digit: gives the permissions of the owner

oSecond digit: gives the permissions assigned to the group

oThird digit: gives the permissions for every other account

• Each of these classes of users must be assigned values
for read, write, and execute permissions

Using chmod with Numeric Arguments

• How do you get three pieces of information out of one
number?
oBy adding powers of two

oEach digit is the sum of three other numbers

• When calculating the number, you add...

o 4 if you want to give read permission

o 2 if you want to give write permission

o 1 if you want to give execute permission

Using chmod with Numeric Arguments

• Notice that all the number are powers of two

• If we write these values in binary notation

o100 represents 4

o010 represents 2

o001 represents 1

• A single value from 0 to 7 is represented by 3 binary digits

• This is how we get three pieces of information from one digit

Using chmod with Numeric Arguments

• For example, to give full permissions I would add
o4 for read permission

o2 for write permission

o1 for execute permission

• So the total of 7 -- which is 111 in binary -- grants all
three permissions

• Let's look at some other digits...

Using chmod with Numeric Arguments

• 6 in binary is 110
o The leftmost digit is 1 indicating read permission

o The center digit is 1 indicating write permission

o The last digit is 0 indicating that execute permission is not granted

• 5 in binary is 101
o The first digit is 1 so read permission is granted

o The second digit is 0 so write permission is not granted

o The last digit is 1 so execute permission is granted

• This scheme is confusing when you first encounter it

• But it becomes easier as you use it

Using chmod with Numeric Arguments
• Remember that you need three of these digits to specify the full permissions

for a file or directory. Let's look at some examples...

• When you create a new file, it will have certain default permissions

$ touch foo.txt

$ ls
foo.txt

$ ls -l
total 0
-rw-r--r-- 1 it244gh libuuid 0 2012-02-09 15:51 foo.txt

• The owner can read and write the file, but not execute it

• The group and everyone else can only read the file

Using chmod with Numeric Arguments

• To make the file unreadable to everyone except
the owner...

$ ls -l

total 0

-rw-r--r-- 1 it244gh libuuid 0 2012-02-09 15:51 foo.txt

$ chmod 600 foo.txt

$ ls -l

total 0

-rw------- 1 it244gh libuuid 0 2012-02-09 15:51 foo.txt

Using chmod with Numeric Arguments

• To change the file back to its default permissions...
$ ls -l

total 0

-rw------- 1 it244gh libuuid 0 2012-02-09 15:51

foo.txt

$ chmod 644 foo.txt

$ ls -l

total 0

-rw-r--r-- 1 it244gh libuuid 0 2012-02-09 15:51

foo.txt

