
Permissions and Links

• The root account

• Setuid and Setgid Permissions

• Setting Setuid and Setgid with chmod

• Directory Access Permissions

• Links

o Two Types of Links

o The ln command

o Removing a link

The root Account

• On every Unix or Linux system, there is a special account
named root

• This account is sometimes referred to as the superuser

• root can:

o access any file

o or run any program

• root is an administrator account

• It is used for system configuration and maintenance

The root Account

• Even a system administrator should not log in as root

• Instead, he or she should use a regular Unix account -- and
should switch to the root account only when they need its
power

• This can be done with the su (switch user) command

• To become the root user, you would enter the following on the
command line

su -

• This will only work if you know the root password

The root Account

• A better way of doing this is to use the sudo command

• sudo stands for superuser do

• You type sudo and then the command that only the root user
can run

• You use it like this

sudo COMMAND_ONLY_ROOT_CAN_RUN

• You will then be prompted for your password – not the root
password

The root Account

• This will only work if the system administrator has added you to
the sudo-ers list

• sudo is safer than using su because the person using it does
not have to know the root password

• If all administrators knew the root password, then you would
have to change it every time one of them left

• If they all use sudo, all you would have to do when they left
would be to delete their entry in the sudo-ers list

Setuid and Setgid Permissions

• Sometimes, a program needs to read or modify a file to do the work
it was designed to do

• For example, the passwd command – which is used to change the
password for an account – has to make changes to the
file /etc/shadow

• When you need to change your password, you run passwd

• But, /etc/shadow is owned by the root account, so no other
account can change it

• To deal with situations like this, two special permissions were created

o setuid

o setgid

Setuid and Setgid Permissions

• If a file has setuid permission, then anyone who runs the file
has all the permissions of the owner of that file -- but only while
the file is running

• This permission means it can change files – that the script or
program needs to do its job – that ordinary users cannot
change

• If a file has setgid permission set, then anyone who runs the
file has the permissions of the group assigned to that file – while
the file is running

• setuid and setgid permissions only apply to executable files
– that is, programs and scripts

Setuid and Setgid Permissions

• A file with setuid permission will have s in place of x in the
column for the owner's execute permission

• A file with setgid permission will have s in place of x for the
group execute permission

• Since setuid and setgid permission apply only to executable
files, there is no ambiguity in replacing x with s

• For example, consider the passwd command...

Setuid and Setgid Permissions

• The executable file for this utility is /usr/bin/passwd

• Running ls -l on this file we get

ls -l /usr/bin/passwd

-rwsr-xr-x 1 root root 42824 2011-02-20 19:18

/usr/bin/passwd

• Notice the s in the place where the owner's execute
permission should be

Setuid and Setgid Permissions

• The passwd command needs to modify /etc/shadow —
which is a file that stores the encrypted passwords

• Only root can change this file

ls -l /etc/shadow

-rw-r--r-- 1 root shadow 926 Jul 16 2013

/etc/shadow

• But you need to change this file for your entry only when you
change your password

• The setuid permission allows you to run passwd and modify
the file, but passwd knows who you really are and it will only let
you modify your own entry not the entry for any other account

Setting Setuid and Setgid with chmod

• You assign setuid or setgid permissions to a file with chmod and an
extra digit

• If I wanted to assign 755 permission to a script along with setuid
permission, I would use 4755

• When 4 is the first digit in a series of four digits used with chmod, setuid
permission is assigned to the file

$ chmod 4755 work.sh

$ ls -l work.sh
-rwsr-xr-x 1 ghoffmn grad 0 Mar 3 12:30 work.sh

• To assign the setgid permission I would use 2 instead

$ chmod 2755 work.sh

$ ls -l work.sh
-rwxr-sr-x 1 ghoffmn grad 0 Mar 3 12:30 work.sh

Directory Access Permissions

• Unix permissions work a little differently for directories

• Read and write permissions for a directory are similar to those
for a file

• Read permission on a directory allows you to list
the contents using ls

• This read permission only allows you to use ls

o To read the files in the directory, you need read permission for each file

o So read permission on a directory does not allow you to read the files
in that directory

o You need read permission on the file to do that

Directory Access Permissions

• Write permission on a directory allows you to create, delete, or
change the name of any files in that directory

• But, you cannot change the files themselves – unless you have
write permission on those files, too

• Note that write permission on a directory only applies to
the contents of a directory – not to the directory itself

• You cannot change the name of a directory or delete it...unless
you have write permission on its parent directory

Directory Access Permissions

• Execute permission on a directory is very different from execute
permission on a file

• You can't “run” a directory from the command line, like you would a
program or script file

• Execute permission on a directory allows you to do two things

o Enter the directory using cd

o Read a file in the directory for which you have read privileges or write to the
file if you have write permission

• If you have read permission for the file but not for the directory in
which it is located, then you can only read the contents if you know
the name of the file

• That's because you need read access to the directory to run ls on it

Links

• Sometimes, it is convenient to have more than one way
of getting to a file or directory

• Windows, for example has shortcuts

• You can create a shortcut anywhere, and clicking on it
will take you to the real file somewhere else on disk

• This allows the user another way of getting to the file

• Instead of going to the directory that holds the file, you
can click a shortcut in some other directory

Links

• In Unix, these pointer files are called links

• Links can be very useful when moving to a directory
that is far away from your current directory

• If your current directory has a link to another file or
directory, then you can use the link to access that file or
directory

• This saves you the bother of using a long absolute or
relative pathname

Links

• For example, each of you has an entry in your home directory
called it244

$ ls -l it244

lrwxrwxrwx 1 it244gh faculty 34 Jan 29 10:39 it244 ->

/courses/it244/sum14/it244gh

• Notice the l (i.e., the lowercase of “L”), the first character in the
permissions string

• This tells you that you have a link named it244, not a directory

• The real directory is cs110ck in /courses/it244/f16/ckelly

• But, you can use the link just as if it were a directory

Links

• In the home directory of my
test account cs110ck is a link
to a directory for this account
in the course directory

/courses/it244/f16/cs110ck

cs110ck

cs110ck

ckelly

Links

• If you cd to the link, you will go to the real directory

• If you cd into this location and use pwd ...

$ pwd
/home/cs110ck

$ cd it244

$ pwd
/home/cs110ck/it244

• ...the path that pwd prints is the route you took to get to the
current directory

• But... it is not the real path to the directory

Links

• You can only get the true location if you use pwd with the -P
option

$ pwd

/home/cs110ck/it244

$ pwd -P

/courses/it244/f16/ckelly/cs110ck

• You must use a capital P, not a lowercase p

• Unix tries to hide your real location when you use a link so as
not to confuse you

Links

• In this case, we used a link named it244 inside the home directory of
my it244gh account to get to
/courses/it244/f16/ckelly/cs110ck

• I can get back to where I came from using ..
$ pwd
/home/cs110ck/it244

$ cd ..

$ pwd
/home/cs110ck

• Why does your home directory have a link to your it244 class
directory?

• To make things easier for instructors like me

Links

• If the directory in which you do your course work were in your home
directory I would have to go to many places to collect your
assignments

• Instead, I only have to go one place, and if I run ls, I see each of
your course directories

$ ls

alexgri fatalaty hw meteos nle sanf5456

skhalifa ychen123 cdelaney GROUP kiwan neko92

rangeley sfarah sukhi515 cs110ck hsingh MAIL

neoalx rolon sindel wenwu10

• The it244 link in your home directory points to your course
directory in /courses/it244/f16/ckelly

• The name of your course directory is your Unix username

The Two Types of Links

• There are two types of links

o Hard links

o Symbolic, or soft, links

• Hard links are older

• But ,they are seldom used these days

• A hard link is like a duplicate file name

o If you have a hard link to a file, and the original filename is deleted,
then the file will still be there

o The file will remain until the last hard link is removed

The Two Types of Links

• Hard links have some disadvantages

• Hard links can only point to files, not directories

• Our Unix filesystem appears to be a single hierarchy

o In reality, it is a collection of

 different file systems...

 ...on different hard disc volumes

o The different file systems are stitched together so that they look
like a single system

o Unix hides this fact from users

The Two Types of Links

• But, this causes problems for hard links

• You can only have a hard link to a file in the same volume as the
link you are creating

• That means you can't link to a file on a different disk or partition

• Symbolic links are much more flexible

o Symbolic links are sometimes called “soft” links

o You can use either an absolute or relative pathname when creating a
symbolic link

The Two Types of Links

• A symbolic link can point to a file or directory on any disk or
partition

• Deleting a soft link does not delete the file or directory it points
to

• You can delete a file or directory that has a soft link pointing to
it without deleting the link

• The symbolic link remains, but it points to nothing

• Use ln to create a link

ln

• To create a symbolic (or soft) link, use ln with the -s option

o Otherwise, you will create a hard link

o That is not what you want

• ln takes two arguments
ln -s TARGET_PATHNAME LINK_NAME

• For example...
$ pwd
/home/cs110ck

$ ln -s ~ckelly/course_files/it244_files examples

$ ls -l examples
lrwxrwxrwx 1 it244gh libuuid 28 2012-09-17 17:53 examples ->

/home/ghoffmn/examples_it244

Removing a Link

• To delete a link, use rm

• This will work whether the link points to a file or a
directory

• If you delete a symbolic link, it will not affect the file or
directory it points to

• If you delete a hard link, you will not delete the file

o Unless, of course, the link is the last connection to the file –
so be careful!

