
Command Line Syntax And Standard I/O

• Syntax of the Command
Line
o Command Options
o tty

o Parsing the Command Line
o The PATH System Variable

• Running Executables
o Running a Program in the
Current Directory

o Running the Command
Entered on the Command
Line

• Main Data Streams
o Standard Input

o Standard Output

o Standard Error

Syntax of the Command Line

• The syntax of the command line is straightforward
o First, comes the command

o Then, perhaps, some options

o Finally...some arguments

• The command is executed when you hit the Enter key

COMMAND [OPTIONS] [ARG_1] [ARG_2] ... [ARG_N]

• The brackets indicate that the contents are optional

Syntax of the Command Line

• Commands vary in the number of arguments they
accept
o Some accept none

o Others require a specific number of arguments

o Still others accept a variable number of arguments

• Arguments must be separated by one or more spaces

cp -r /etc /tmp/etc.backup

Command Options

• Many commands have options

o Options modify the behavior of the command

o Options are usually preceded by one or two dashes -

 GNU programs frequently have options that are preceded by two
dashes --

 The options in GNU programs are usually words

 The options in other Unix programs are usually a single letter

Command Options

• When a command uses a single dash - before an option, you
can usually combine options behind a single -

o An example of this is ls -ltr

o This means run ls

 To get a long listing

 Sorted by modification date and time

 In reverse order

• Options using two dashes -- cannot usually be combined

• In this case, each option must be written separately and
preceded by two dashes

Command Options

• Sometimes, the option can have its own argument

• When this happens, the argument is usually separated from
the option by spaces

gcc -o prog prog.c

• Utilities that report the size of files usually do so in bytes
o This works well with small files

o But with large files, a size in bytes can be hard to read
 Such utilities often have a -h or --human-readable option

 With this option, the file size will be displayed in kilobytes,
megabytes or gigabytes, as appropriate

Command Options

• df (disk free) shows the amount of space on the various
filesystems

$ df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda1 1352600 1268580 15312 99% /

none 2021964 168 2021796 1% /dev

none 2029532 0 2029532 0% /dev/shm

none 2029532 84 2029448 1% /var/run

none 2029532 0 2029532 0% /var/lock

blade66:/disk/sd0g/courses/it244

8260768 2484096 5694048 31% /courses/it244

blade61:/disk/sd0g/home/it244gh

8260768 8149792 28352 100% /home/it244gh

mx1:/disk/sd1e/spool/mail

4129312 1350144 2737888 34% /spool/mail

blade61:/disk/sd0f/home/sd86

8260768 5835520 2342624 72% /home/sd86

blade61:/disk/sd0f/home/as1414

8260768 5835520 2342624 72% /home/as1414

Command Options

• When used with the -h option, df produces more readable output

$ df -h

Filesystem Size Used Avail Use% Mounted on

/dev/sda1 1.3G 1.3G 15M 99% /

none 2.0G 168K 2.0G 1% /dev

none 2.0G 0 2.0G 0% /dev/shm

none 2.0G 84K 2.0G 1% /var/run

none 2.0G 0 2.0G 0% /var/lock

blade66:/disk/sd0g/courses/it244

7.9G 2.4G 5.5G 31% /courses/it244

blade61:/disk/sd0g/home/it244gh

7.9G 7.8G 28M 100% /home/it244gh

• Many commands display a help message when run with the --help
option

• All GNU utilities accept this option

tty

• As you type at the command line, what you type is
collected by a program called tty

• tty is a device driver that is part of the kernel

• It looks at each character as you type – and takes
appropriate action

• Most of the time, tty just places the character in a
buffer

• But, tty responds differently to special characters

tty

• When the character you type is the backspace, it
erases the previous character from the buffer

• When the character is the Control-U tty erases the
buffer from the current insertion point to the beginning
of the line

• tty is responsible for all command line editing

• When tty sees a newline character, it passes the
contents of the buffer to the shell

• Newline is the character you get from hitting Enter on a
windows machine (or Return on a Mac)

Parsing the Command Line

• The shell takes the contents of the buffer and breaks it up
into tokens

• Tokens are the strings of text separated by spaces or tabs

• This action is called parsing: Making a list of all the strings on
the command line and throwing away the whitespace

• Next, the shell looks for the name of the command – usually,
the command name is the first string on the command line

• The command can be specified by a simple filename

ls

• Or... by using a pathname to the executable file

/bin/ls

The PATH System Variable

• When you run a program by typing a pathname at the terminal
– such as /usr/bin/php – the shell has no difficulty finding
the executable file to run

• How can the shell know where to find an executable file if all it
gets is the command name?

• Programs are executable files that can be stored anywhere in
the filesystem

• So, how does the shell find the correct file?

• The shell checks a system variable called PATH

The PATH System Variable

• PATH contains a list of directories to search for an executable file
whose name matches the command typed at the command line
o The shell searches each of these directories in turn – until it finds an

executable file with the name of the command

o PATH always has a default value which is created when the system is
installed

• Here is the default value on it244a:

$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:

/bin:/usr/games:/usr/local/games

The PATH System Variable

• The absolute pathname of each directory is separated from the
next by a colon, :

• If the shell reaches the end of the directory listings
in PATH without finding the executable file, then it will print an
error message

• If the shell finds an executable file but you do not have execute
permission, then it will tell you this in an error message

• You can modify the PATH variable in your own Unix environment

• We'll see how to do this in a few classes...

Running a Program in the

Current Directory

• For reasons having to do with security, you should never
put the current directory, . in the PATH list

• Then, how do you run a program that is located in your
current directory?

• You can do this using the following construction
./PROGRAM_NAME

• This will always work, regardless of the contents
of PATH

Running a Program in the

Current Directory

• Here is an example:
$ ls -l foo.sh

-rwxrwxr-x 1 ghoffmn grad 16 Oct 1 15:49

foo.sh

$./foo.sh

Foo to you

• Notice that I did not have to run bash to run this script

• That's because the script file has execute permission set

Running the Command Entered on

the Command Line

• When you type a command at the command line, the shell has
to find the right executable file – by looking through the
directories listed in PATH

• If you have execute permission on the executable file, the shell
will ask the kernel to start a process for that program

• A process is a running program

• Only the kernel can create a process, so...
o the shell gives the kernel the pathname of the executable file, and...

o the kernel does the rest

Running the Command Entered on

the Command Line

• Each process needs resources to do its job

• One of the most important resources is memory

• Each process has memory allocated to it that it alone
can use

• This prevents one program from interfering with
another

• In addition to memory, the shell gives the process
various system resources like pointers to certain files

Running the Command Entered on

the Command Line

• The shell also gives the program the tokens from the command
line
o The name used to call the program

o The options used

o The arguments used

• The shell does not check the options or arguments
o The shell has no idea what options or arguments are appropriate to a

given program
o The program has the responsibility to check the options and arguments

for correctness
o If the program gets the wrong options or arguments, then it is the

responsibility of the program to print an error message and take
appropriate action

Running the Command Entered on

the Command Line

• While the program is running, the shell waits for it to finish

o It does this by going into an inactive state known as "sleep"

o When the program finishes, it must tell the shell that it is done

• It does this by sending the shell an exit status

o The exit status is an integer that must be 0 or greater

o An exit status of 0 means the program finished without error

o Any exit status greater than zero indicates an error

o A program can issue different exit status values for different types of
errors

Running the Command Entered on

the Command Line

• You can see the exit status of the last program by looking at the
value of the system variable ?
$ cat foo

cat: foo: No such file or directory

$ echo $?

1

• The exit status is 1, meaning the command failed. (Notice that I had
to put a dollar sign $ in front of the variable name to get its value.)

• When the shell gets an exit status it returns to an active state
o It prints a prompt to the terminal

o And it waits for the next command

Standard Input, Standard

Output, and Standard Error

• Every Unix process always has access to three different "files"
o Standard Input

o Standard Output

o Standard Error

• Unix thinks anything it can write to or read from is a file

• Standard input ...
o ...is where the program gets input unless specifically told to get it from

a file

o By default, standard input is the keyboard

Standard Input, Standard

Output, and Standard Error

• Standard output ...
o ...is where the program prints the results if it is not told specifically

where to send it

o By default, standard output is the terminal

• Standard error ...
o ...is where the program sends error messages

o By default, standard error is the same as standard output the terminal

• Each of these "files" can be changed by the user using a Unix
feature called redirection

