
The Terminal as a File

• Earlier, I said that Unix thinks of almost everything as a file
o Directories are files, as far as Unix is concerned

o So are printers and disk drives

• Once upon a time, computers were expensive and rare

• Most computers had multiple terminals connected to them
o This allowed more than one person to use the computer at any

one time

o Each of these terminals was a separate input and output device

o Unix was created to work in an environment where one machine
connected to many terminals

The Terminal as a File

• A terminal can be a physical device like a keyboard and monitor,
or it can be an ssh session coming in from another machine

• You can have several ssh session windows going at once
o Each window is connected to the same remote machine but is a

different login session and each login session has its own terminal "file"

o To find up what terminal you are using in your session, use
the tty command
$ tty

/dev/pts/17

• In the case above, I was using terminal 17

• This tty is not the device driver tty

The Keyboard and Screen as Standard
Input and Standard Output

• By default...
o standard input is taken from the

keyboard,
o standard output goes to the screen,
o and standard error also goes to the

screen

• The cat utility expects you to give it
the name of the file you want to
print to the command line

• What happens when you don't give
it a file name as an argument?
o In this case, cat will accept input from

standard input which, by default, is
the keyboard

• If you run cat without
specifying a file it will simply
echo what you type:

$ cat
foo
foo
bar
bar
bletch
bletch
^D

Redirection

• When I had you create a .forward file, I told you to use
cat > .forward [Enter]

YOUR_EMAILADDRESS [Enter]

[Control-D]

• This trick allows you to use cat as a simple text editor
o But, it won't allow you to backspace

o This is an example of redirection

o By using the greater than character > we are telling cat to
send output to the file .forward instead of printing it to the
screen

Redirection

• Redirection is when you tell Unix to take data from or send
data to some other "file" then it would normally use

• In the above example, we have redirected standard output

• Instead of sending the output from cat to the terminal, we
are sending it to the file .forward

• Redirection is one of the features that makes Unix flexible

o It allows you to take input from or send output to any file you wish

o You can take input from something other than the keyboard like a file

o You send output to something other than the terminal such as a file

Redirection

• Redirection is what makes pipes possible
o When you set up a pipe you are sending the output of one

program into the input of another
o You are redirecting the output of the first command from the

terminal to the input of the second command

Redirecting Standard Output

• To redirect output, use the greater than
symbol > followed by a filename

• This tells Unix to send the output from the command to
the file or device that appears after the symbol

• The format for output redirection is
COMMAND [ARGUMENTS] > FILENAME

• For example, to save a list of everyone currently logged
on, you could use
$ who > current_logins.txt

Redirecting Standard Output

• That way, the output from who is preserved as a text file
for whatever purpose you may use it:
$ cat current_logins.txt

bmt11989 pts/1 2011-10-02 16:43 (c-24-147-18-
10.hsd1.ma.comcast.net)

vtran pts/0 2012-09-26 17:34 (c-76-119-98-
173.hsd1.ma.comcast.net)

abutawha pts/1 2012-09-26 17:36 (158.121.234.175)

ghoffmn pts/2 2012-09-26 18:19 (dsl092-066-
161.bos1.dsl.speakeasy.net)

Redirecting Standard Input

• When redirecting standard output, we were sending
output to something other than the terminal

• When we redirect standard input, we take input from
something other than the keyboard

• To do this, we use the less than symbol <

• Here is the format:

COMMAND [ARGUMENTS] < FILENAME

• repeat.sh is a shell script that repeats the text the user
enters:

Redirecting Standard Input
$./repeat.sh
Enter several lines
Type X on a line by itself
when done
asdfasd
1234132
asdfasd
1234
X

You entered

asdfasd
1234132
asdfasd
1234
X

• But...I can also take input from a
file by redirecting standard input
$./repeat.sh < test.txt
Enter several lines
Type X on a line by itself
when done

You entered

123456789
abcdefg
987654321
hijklmnop
foo
bar
bletch
X

Redirecting Standard Input

• We used input from this file:

$ cat test.txt
123456789
abcdefg
987654321
hijklmnop
foo
bar
bletch
X

Redirecting Standard Output
Can Destroy a File

• If you redirect standard output to a file that already exists, you
will overwrite the contents of that file

• You will replace the original contents of the file with the output
of the new command

• There is a "noclobber" option in Bash to prevent this from
happening

• But, it is best to simply be careful about the file to which you
redirect standard output

Adding Output to an Existing File

• If you redirect standard output to a file that already
exists, you will lose the original contents of that file

• But Unix allows you to add something to the bottom of
a file

• This is called appending

• The append symbol is two greater than symbols with no
space in between >>

• The format is
COMMAND [ARGUMENTS] >> FILENAME

Adding Output to an Existing File

• For example:
$echo foo > test.txt

$ cat test.txt
foo

$ echo bar >> test.txt

$ cat test.txt
foo
bar

• Notice that "foo" is still in the file, and "bar" is on the
following line

/dev/null

• Sometimes a program will do something useful but
produce output you don't want

• For situations like this, Unix provides /dev/null
o Any output you send to /dev/null will disappear

o It will never appear on the screen

o If you redirect input to come from /dev/null the command
will receive an empty string

• One way to think of /dev/null is to imagine that you
are redirecting output to a destination of "nothingness"

/dev/null

• /dev/null is most useful when dealing with error
messages
o Since error message normally go to the terminal, they will be

mixed up with the regular output

o Redirecting standard error to /dev/null will prevent this
from happening

o I will show you how to do this in a future class

• In fact, you already have some experience using
/dev/null – specifically, for the purpose of testing your
exercise and homework scripts!

