
Midterm Review - Topics

• Correcting Mistakes on the
Command Line

• Retrieving Your Last Command
Line Entry

• Aborting a Running Program

• Getting Help with Unix
Commands

• Quoting and Escaping

• cd - Change Directory

• pwd - Print the Current
Directory

• cat - Print the Contents of a
File

• rm - Delete a File

• mkdir - Create a Directory

• rmdir - Delete a Directory

• cp - Copy Files

• mv - Move a File or Directory

• echo - Print Text to the
Terminal

• hostname - Print the Name of
Your Host Machine

Midterm Review - Topics

• Pagers - View a File One Screen
at a Time

• Pathname Completion

• grep - Finding Strings inside
Files

• head - View the Top of a File

• tail - View the Bottom of a File

• sort - Print a File in Sorted
Order

• diff - Differences between Files

• file - See the File Type

• Pipes - Stringing Programs
Together

• date - Get the Date and Time

• which - Finding a Program File

• whereis - Finding Files Used by
a Program

• locate - Search for Any File

• who - See Users Logged On

• finger - Get information on
Users

• The Hierarchical Filesystem

Midterm Review - Topics

• Unix Files and Directories

• Filenames

• Case Sensitivity

• Filename Extensions

• Current Directory

• Your Home Directory

• Navigating the Hierarchical File
Systems

• Hidden Filenames

• The . and .. Directory Entries

• Pathnames

• Absolute Pathnames

• Tilde ~ in Pathnames

• Relative Pathnames
o Relative Pathnames in Your

Current Directory

o Relative Pathnames in a
Subdirectory

o Relative Pathnames above the
Current Directory

o Relative Pathnames Neither above
Nor below the Current Directory

Midterm Review - Topics

• Access Permissions

• Viewing Access Permissions

• chmod

• Using chmod with Numeric
Arguments

• The root Account

• Directory Access Permissions

• Links
o The Two Types of Links

o ln

o Removing a Link

• The Monitor and Keyboard as
Files

• The Keyboard and Screen as
Standard Input and Standard
Output

• Redirection
o Redirecting Standard Output

o Redirecting Standard Input

o Redirecting Standard Output Can
Destroy a File

o Adding Output to an Existing File

• /dev/null

Correcting Mistakes on the
Command Line

• You can correct mistakes on the Unix command line
using the following Control key combinations
o Control A - Move the text insertion point to the beginning of

the command line

o Control E - Move the text insertion point to the end of the
command line

o Control K - Removes everything from the current text
insertion point to the end of the line

o Control U - Removes everything from the current text
insertion point to the beginning of the line

Retrieving Your Last Command
Line Entry

• To retrieve the previous command, hit the up arrow

key ↑
• You can do this several times to go back to any

previous command

• The down arrow key ↓ takes you in the opposite
direction

Aborting a Running Program

• You can abort a running program using Control-C

Getting Help with Unix
Commands

• Many Unix utilities have a help option

• The help option provides some basic information
about the command

• Some commands use -h as the help option; others use
--help

• For more information, use man or info

• Follow man or info with the name of the command

Special Characters in Unix

• Some characters have special meaning in Unix

• They are

& : | * ? ' " [] () $ < > { } # / \ ! ~

• Whitespace characters are special too

• They are

o Space

o Tab

o Newline

Special Characters in Unix

• Space and Tab separate commands, options, and
arguments on the command line

• The Enter key creates a newline character on a PC,
while on a Mac it is the Return key

• When the shell sees a newline, it executes the
commands on the command line

Quoting and Escaping

• You can turn off the special meaning of a character by
preceding it with a backslash \

• You can also turn off special meanings by enclosing a
string in quotes

• You can continue a command onto the next line by
using a backslash just before hitting Enter

• The backslash turns off the special meaning of the
newline character

cd - Change Directory

• To change your directory use cd

• If you run cd without an argument, it will take
you to your home directory

• To go to the directory above your current
directory, use

cd ..

pwd - Print the Current Directory

• pwd will print you your current location in the
filesystem

• pwd usually takes no arguments

• However, if you travelled to a directory by way of
a symbolic link, then you can use the -P option to
get the true path.

ls - List the Contents of a Directory

• ls lists the contents of a directory

• To see the contents of directory work, run

ls work

• When you use ls without an argument it lists the
contents of the current directory

• For more information run ls with the -l (long) option

• ls -a displays the "invisible" files whose name begins
with a .

cat - Print the Contents of a File

• To display the contents of a file, use cat
$ cat foo.txt

foo

bar

foobar

• Use cat -n to print a number for each line of the file
$ cat foo.txt

1 foo

2 bar

3 foobar

rm - Delete a File

• To remove a file, use rm

• To remove all files in a directory, use rm *

• Be very careful when you use this construction

• There is no file recovery mechanism in Unix

• rm will not remove a directory unless you use the -rf
options

• This construction is also very dangerous

Directories

• mkdir - Create a Directory

oYou create a directory using mkdir

• rmdir - Delete a Directory

ormdir is used to remove a directory

ormdir will not work unless the directory is empty

Files

• cp - Copy Files

ocp copies files or directories

oTo copy a directory and all its files and sub-directories
use cp with the -r option

• mv - Move a File or Directory

oUse the mv command to move a file or directory from
one place to another

oTo rename a file or directory, you also use mv

echo - Print Text to the Terminal

• echo prints text to the terminal

$ echo Hello

Hello

• You can use echo to print the value of a system
variable if your precede the variable name with
a $
$ echo $SHELL

/bin/bash

hostname - Print the Name of Your
Host Machine

• hostname prints the network name of the
machine that you have logged on to

$ hostname

vm75

• When used with the -i option hostname will print
the IP address of the machine

hostname -i

192.168.106.240

Pagers - View a File One Screen
at a Time

• Pagers are programs that display the contents of a file,
one screenful at a time

• The two pagers that Unix supplies are more and less

o Hitting the Space bar advances to the next screen

o Hitting the Enter or Return key takes you down one line

• less, just to be confusing, has more features
than more

Pathname Completion

• When typing a long file name, it is easy to make a mistake

• To make life easier, Unix provides a feature
called pathname completion

• You type a few characters, then hit the Tab key

• Unix will supply the rest if there is only one file or directory
that matches
o If there is more than one match Unix will supply as much as it can

and then beep. If there is no match, it will also beep

o If you don't get a complete match, hitting Tab twice will display a
list of all possible matches

• This only works in the Bash shell

grep - Finding Strings inside Files

• grep is used to find all lines in a file that contain a
certain string

• grep takes two arguments

oThe string you are searching for

oThe file or files in which to search

• grep has the following format

grep STRING FILE [FILE ...]

grep - Finding Strings inside Files

• To run grep on the files in a directory use the -r
(recursive) option

• grep -r will search through all files in a directory and
in all subdirectories

• grep, like Unix, is case sensitive

o It thinks of "foo" and "FOO" as two different strings

o To have grep ignore case, run it with the -i option

• To have grep find all lines that do not match a string
run it with the -v option

More File Viewing...

• head - View the Top of a File

o head prints the first 10 lines of any file

o If you want a different number of lines follow head with a dash, - ,
and a number

head -20 foo.txt

• tail - View the Bottom of a File

o tail prints the last 10 lines of any file

o If you want a different number of lines follow tail with a dash, - ,
and a number

tail -20 foo.txt

sort - Print a File in Sorted Order

• sort prints a sorted list of the lines in a file to the terminal

o sort does not change the file

o sort sorts the lines of a file by the first few characters in the line

• To sort in reverse order use the -r option

• sort, by default, sorts in alphabetical order

• This is a problem when the first characters on a line are
numbers

o That's because 11 will sort before 2

o To sort in numerical order use sort -n

o To sort in reverse numerical order use sort -nr

diff - Differences between Files

• diff compares two files and notes their
differences

• diff was created for use with the patch utility

• Run diff with the -y option to get output that is
easier to read

file - See the File Type

• The file utility can be used the determine the
type of a file:
$ file *

class_notes.css: ASCII text

common_unix_commands.html: HTML document text

cs285L: directory

emacs_cheat_sheet.html: HTML document text

index.html: HTML document text

it244: directory

tips.html: HTML document text

unix_cheat_sheet.html: HTML document text

work.txt: ASCII text

Pipes - Stringing Programs Together

• A pipe takes the output of one command and feeds it
into the input of another command

• Pipes allow you to chain together several Unix
commands into a single command

o Commands joined in this way are sometimes called pipelines

o Pipes are essential to the Unix philosophy of simple tools

o Using pipes, you can string together many commands to
achieve exactly what you want

Pipes - Stringing Programs Together

• You form a pipe by placing the vertical line character |
between two commands
$ head -5 red_sox.txt
2011-07-31 Red Sox @ White Sox Win 5-3
2011-07-02 Red Sox @ Astros Win 7-5
2011-07-03 Red Sox @ Astros Win 2-1
2011-07-04 Red Sox vs Blue Jays Loss 7-9
2011-07-05 Red Sox vs Blue Jays Win 3-2

$ head -5 red_sox.txt | sort
2011-07-02 Red Sox @ Astros Win 7-5
2011-07-03 Red Sox @ Astros Win 2-1
2011-07-04 Red Sox vs Blue Jays Loss 7-9
2011-07-05 Red Sox vs Blue Jays Win 3-2
2011-07-31 Red Sox @ White Sox Win 5-3

Pipes - Stringing Programs
Together

• Notice, in the command line above, that sort does not
have an argument

o Normally, sort requires an argument that specifies the file to
sort

o But in a pipe, each command after the first takes its input
from the output of the preceding commands

o You never need to specify the input when using a command
in a pipeline except the first command

date - Get the Date and Time

• The Unix date command will give the time and the date

$ date
Tue Aug 21 10:20:05 EDT 2012

• If we follow the command with a + and a string we can
change the format

$ date +"%Y-%m-%d"
2012-08-21

• Use info or man to see the various formatting
options date provides

which - Finding a Program File

• Unix commands are programs that are located
somewhere in the filesystem

• The Unix utility which gives the location of an
executable file

• To find where the executable file for less is
located, we can run which like this

$ which less

/usr/bin/less

which - Finding a Program File

• which uses the PATH system variable to find the
executable file

• We'll discuss PATH in a future class

whereis - Finding Files Used by a
Program

• whereis is another program that can be used to
locate program files

• whereis takes a different approach than which

oEvery Unix or Linux system has certain standard
places where it stores programs and the files they use

owhereis searches these locations

o It returns a list of all files associated with a program

whereis - Finding Files Used by a Program

• When we run whereis on the tar utility we get more
information than which returned

$ whereis tar

tar: /bin/tar /usr/include/tar.h /usr/share/man/man1/tar.1.gz

• The first entry is the executable file

• The second is a header file

• The third is the file that man used to provide information
about tar

locate - Search for Any File

• which and whereis only work on programs

• locate can be used to find any file

• You don't need to know the full name of a file to
use locate

• locate will search on a partial file name
$ locate foot

/etc/update-motd.d/99-footer

/usr/share/doc/java-common/debian-java-faq/footnotes.html

...

locate - Search for Any File

...

/usr/share/emacs/23.3/lisp/mail/footnote.elc

/usr/share/emacs/23.3/lisp/org/org-footnote.elc

/usr/share/libparse-debianchangelog-perl/footer.tmpl

/usr/share/xml-core/catalog.footer

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-footbridge

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-footbridge/Kconfig

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-
footbridge/Makefile

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-
footbridge/Makefile.boot

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-footbridge/include

...

locate - Search for Any File

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-
footbridge/include/mach

/usr/src/linux-headers-3.0.0-12/arch/arm/mach-
footbridge/include/mach/debug-macro.S

...

• locate does not actually search the file system itself

o That would take too long

o Instead, it uses a database of all files on the system

 This database is created by another program updatedb

 updatedb is usually run automatically in the background to update
the database

who - See Users Logged On

• who prints a list of all users currently on the machine

$ who
ghoffmn pts/0 2012-08-12 13:41 (dsl092-066-

161.bos1.dsl.speakeasy.net)
rouilj pts/1 2012-08-12 04:25 (pool-74-104-161-

40.bstnma.fios.verizon.net)
eb pts/2 2012-08-12 08:19 (pool-96-237-251-

11.bstnma.fios.verizon.net)

• who also provides information about each user's login
session

who - See Users Logged On

• who am i will show the user who is logged into a
terminal

$ who am i

ghoffmn pts/0 2012-08-12 13:41 (dsl092-066-
161.bos1.dsl.speakeasy.net)

finger - Get information on Users

• finger provides information about a user account
$ finger ghoffmn
Login: ghoffmn Name: Glenn Hoffman
Directory: /home/ghoffmn Shell: /bin/bash
On since Wed Sep 17 16:09 (EDT) on pts/1 from dsl092-066-

161.bos1.dsl.speakeasy.net
1 second idle

Mail forwarded to glennhoffman@mac.com
Mail last read Thu Sep 4 15:12 2014 (EDT)
Plan:
Office: McCormack M-3-607 Fall 2014
Office Hours: Tuesday & Thursday, 10:00 - 12:00 PM and by appointment
Classes:

IT 341-2 Introduction to System Administration TuTh 12:30-1:45
S3-148 (IT Lab)

IT 244-1 Introduction to Linux/Unix TuTh 2:00-3:15
S3-028 (Web Lab)

...

finger - Get information on Users

• finger, like mv, has two functions

o When used without an argument, finger shows every user
currently logged in

$ finger

Login Name Tty Idle Login Time ...

ghoffmn Glenn Hoffman pts/0 Aug 18 11:13 ...

rouilj John P. Rouillard pts/1 4:34 Aug 18 06:44 ...

ubuntu Ubuntu Dummy *tty1 14d Aug 4 04:53 ...

finger - Get information on Users

o You can also use a last or first name with finger

$ finger Hoffman
Login: ghoffmn Name: Glenn Hoffman
Directory: /home/ghoffmn Shell: /bin/bash
On since Wed Sep 17 16:09 (EDT) on pts/1 from dsl092-066-

161.bos1.dsl.speakeasy.net
1 second idle

Mail forwarded to glennhoffman@mac.com
...

Login: it244gh Name: Dummy for Glenn Hoffman
Directory: /home/it244gh Shell: /users/nologin
Never logged in.
Mail forwarded to glennhoffman@mac.com
...

The Hierarchical Filesystem

• Unix uses a hierarchical filesystem

• This means there is one directory at the top, called
the root directory

o The root directory is indicated by a simple slash character /

o All other directories are contained within the root directory or
one of its many subdirectories

• This structure is called a tree because it looks like a tree
turned upside down

The Hierarchical Filesystem

• A hierarchical filesystem also resembles a family tree

• So, we often use terms that describe family members when
talking about directories:

o The directory up one level from your current directory is called
the parent directory

o All directories above the current directory are called ancestors

o All directories inside the current directories are called child directories

o All directories below the current directory can be called descendants

o All directories and files within the same parent directory are
called siblings

For example...

Unix Files and Directories

• Files are sequential arrangements of data on disk

• There are several types of files

o Program files

o Text files

o Data files

o Configuration files

• For the user, directories are simply containers that hold files

Unix Files and Directories

• Unix tends to treat everything is sees as a file

o Unix even considers devices, such as printers, as files

o Directories are files too, as far as Unix is concerned

• You cannot run cat, more, or less on a directory

• The information that directory files contain can only be
accessed by system programs and system calls

Filenames

• When you ask Unix for a file you must give it two pieces of
information

o The name of the file

o The location of the file in the hierarchical file system

• Every file has a filename

o The maximum number of characters permitted in a filename varies from
one Unix to another

o Most Unix flavors allow file names of up to 255 characters

• It is best to keep filenames short because this makes typing and
remembering them easier

Filenames

• Never use a space in a file or directory name

o This is a bad idea

o Use an underscore, _ , instead of a space in file names

• To avoid problems, only use the following characters in
file names:

Uppercase letters (A-Z) Underscore _

Lowercase letters (a-z) Dash -

Digits (0-9) Period .

• You cannot have two files with the same name in the
same directory

Case Sensitivity

• Unix is case sensitive

o This means that "Foo", "foo" and "FOO" are three different
things as far as Unix is concerned

o Unix utility and program names are always lowercase

• Some operating systems do not distinguish between
UPPERCASE and lowercase characters

o Windows is such a system

o Make life easy for yourself

o Use only lowercase characters in Unix filenames

Filename Extensions

• Extensions are strings of characters that appear at the end
of the filename after a period
o Extensions are not recognized by the Unix filesystem

o As far as Unix is concerned they are just legal characters that are
part of the filename

• Some Unix programs expect their files to have certain
extensions
o For example, the C compiler, gcc expects the filenames of source

code files to end in .c

o The Java compiler, javac expects Java source files to
have .java at the end of the filename

• These extensions are required by the program not by Unix

Current Directory

• The way a Unix command works depends, somewhat, on
your environment

• One of the most important parts of your environment is
your current directory

• The pwd (print working directory) command will always tell
you your current directory

• If a command expects a directory as an argument, then you
can usually omit it and the program will assume you mean
you current directory

• For example, ls used with no arguments will list the
contents of your current directory

Your Home Directory

• Whenever you log in to a Unix host, you will always find yourself
in your home directory

o This a directory that belongs to your Unix account only

o You have full control of permissions within this directory

• If you use cd with no arguments, it will take you to your home
directory

$ cd

$ pwd

/home/ghoffmn

Your Home Directory

• Your home directory contains a number of hidden files which
customize your environment like .forward

• On most Unix systems, home directories are found inside
the /home directory

• On a Mac, home directories appear inside /Users

• The name of your home directory is the same as your Unix
username

Navigating the Hierarchical File
Systems

• Any file or directory in the filesystem will be one of four
positions relative to your current directory

o It can be inside your current directory

o It can be below your current directory

o It can be above your current directory

o It can be off to the side of your current directory

• In this last case, you must go up before you can go
down to reach this file

Off to the
side...

Hidden Filenames

• A file whose filename begins with a period . is a
"hidden" or "invisible" file

• ls does not display these files unless you use the -a
option

• These files are used to configure your Unix environment

The . and .. Directory Entries

• Every directory has at least two entries . and ..

o When a new directory is created these are the first two entries

. stands for the current directory

.. stands for the parent directory of your current directory

• .. is the directory immediately above your current location

• . is most often used in two circumstances:

o To run a program in your current directory

o To move or copy a file to your current directory

Pathnames

• Every file has a pathname which is used to access the
file

o A pathname has two components

 The name of the file

 A path to reach the file

o The path is a list of directories that you must go through to
reach the file you want

o A pathname is like an address on a letter a name and
directions to get there

• The name of the file is always at the end of a pathname

Pathnames

• When the slash / appears between names in a
pathname it is used to separate a directory name from
what comes after it

• When a / is the first character in a pathname it stands
for the root directory

• There are two types of pathnames

o Absolute

o Relative

Absolute Pathnames

• The top of the filesystem is a directory called the root
directory

o The root directory is represented by a single slash character /

o It can stand alone or appear as the first character before a
directory name

• An absolute path is a list of directories starting with the
root directory and ending with the directory that contains
the file

• When you add the filename to the end of an absolute path
you have an absolute pathname

Absolute
Pathnames

Tilde ~ in Pathnames

• There is one form of absolute path that is very short

• This is the tilde character ~

• Tilde stands for your home directory

o This means you can use tilde ~ anywhere you would
normally use a path to your home directory

o When you put a tilde in front of a Unix username it stands for
the home directory of that account

• ~ always means an absolute path

Relative Pathnames

• Absolute pathnames are useful because you can use them
anywhere

• But, they are long and easy to mistype

• For most purposes, it is easier to use relative pathnames

• In a relative pathname, the path starts from your current
directory

o In an absolute pathname, the path starts from the root /

o While all absolute pathnames start with a slash / or a tilde ~ relative
pathnames never do

• As far as Unix is concerned it makes no difference whether you
use and absolute or relative pathname

Relative Pathnames

• There are four types of relative pathnames:

1. When the file is in your current directory

2. When the file is in a subdirectory of your current directory

3. When the file is in a directory that is an ancestor of your
current directory

4. When the file is in a directory that is neither an ancestor or
descendant of the current directory

• A relative pathname of a file or directory inside your
current directory is simply the name of that file or
directory

Relative Pathnames in a
Subdirectory

• Things get a little more complicated when you are
dealing with a file in a subdirectory

• Here, you must list every directory between your current
directory and the file you want

• You must use a slash / to separate the name of each
directory from what comes after it

Current Directory In a Subdirectory

Relative Pathnames above the
Current Directory

• When the file or directory is above the current directory,
you can't list the directory names

• Instead, you have to use the special .. entry in each
directory

• Use one .. for each directory up the chain in the path

• Use a slash / between each ..

Relative Pathnames neither Above
nor Below the Current Directory

• What if the file is neither above nor below?

• Here, you have to go up to a common ancestor and then
down to the directory that holds what you want

• The path starts with one or more ..

• You keep going up until you get to a directory that is an
ancestor of both your current directory and the file you are
trying to reach

• Once you get to the common ancestor, you go down to the
directory that holds the file

In an Ancestor
Directory

Neither Above nor
Below

Access Permissions

• All Unix files and directories have access permissions

• The access permissions allow the owner of a file or directory to

decide who gets to do what with the file or directory

• By default, the owner of a file or directory is the user account
that created it

• Every file, directory or device on a Unix filesystem has three
types of permissions

o Read

o Write

o Execute

Access Permissions

• Each access permission can be either on or off .

• If you have read permission on a file you can look at the
data in the file

• If you only have read permission, you cannot change a file

• To change a file, you need write permission

• You cannot run a program or script file unless you
have execute permission on that file

Access Permissions

• Each of the three permissions is set either on or off to
three classes of users:

o The owner

o The group

o Every other account

• Every file or directory has an owner

• The account that created the file is usually the owner

Access Permissions

• A group is a collection of Unix accounts

o A group can only be set up by a system administrator

o Every file or directory is assigned to a group

• The last class of users is everyone else any account that is
not the owner or a member of the group

Viewing Access Permissions

• To view the access permissions of a file or directory
use ls -l

$ ls -l
total 5
-rw------- 1 it244gh libuuid 316 2011-09-20 21:32

dead.letter
lrwxrwxrwx 1 it244gh libuuid 34 2011-09-06 13:21 it244 ->

/courses/it244/s12/ghoffmn/it244gh
drwx------ 2 it244gh libuuid 512 2011-09-07 15:03 mail
drwxr-xr-x 2 it244gh libuuid 512 2011-09-25 15:48 test
-rw-r--r-- 1 it244gh libuuid 15 2011-09-20 16:18 test.txt

Viewing Access Permissions

• The character in the first column indicates the type of file

o A dash - means an ordinary file

o The letter d indicates a directory

o The letter l (el) indicates a link

• The next 3 characters indicate the owner's permissions:

o r means the owner has read permission

o w means the owner has write (change) permission

o x means the owner has execute (run) permission

o - means the owner does not have the permission that would
normally appear in this column

Viewing Access Permissions

• The next three characters give the permissions of the group

• The last three characters are the permission of all other
accounts

• The next column is a number that indicates the number of
links to the file or directory

• The following column is the owner of the file or directory

• After that, you will find the group assigned to the file or
directory

chmod

• When a file is created, it has certain default permissions
$ touch test.txt
$ ls -l test.txt
-rw-r--r-- 1 it244gh libuuid 0 2012-09-17 14:40 test.txt

• To change these permission, you need to use chmod

• Only the owner of a file can do this

• chmod requires two arguments

o The permissions you want to grant

o The name of the file(s) or directory(s) to which the change will be applied

chmod

• The format for a call to chmod is

chmod PERMISSIONS FILES_OR_DIRECTORIES

• The permission can be specified in two ways

o Symbolically, using letters and the plus and minus signs

o Numerically, using three digits running from 0 to 7

• I will teach the numeric format for expressing permissions

o You are free to read about the symbolic format in the textbook

o I will not deduct points for using symbolic format, as long as you use it
correctly

Using chmod with Numeric Arguments

• The numeric permissions format uses three digits, where
each digit is a number from 0 to 7:

o The first digit gives the permission of the owner

o The second digit gives the permissions assigned to the group

o The third digit gives the permissions for every other account

• How do you get three pieces of information out of one
number?

• By adding powers of two.

Using chmod with Numeric Arguments

• Each digit is the sum of three other numbers; when
constructing the number, you add

o 4 if you want to give read permission

o 2 if you want to give write permission

o 1 if you want to give execute permission

• Notice that all the number are powers of two; if we write
these values in binary notation

o 100 represents 4

o 010 represents 2

o 001 represents 1

Using chmod with Numeric Arguments

• A single decimal digit from 0 to 7 is represented by 3
binary digits

• This is how we get three pieces of information out of
one digit

o For example, to give full permissions I would add

 4 for read permission

 2 for write permission

 1 for execute permission

o So the total, 7, represents all three permissions

Using chmod with Numeric Arguments

• Try to remember this sequence

read write execute

4 2 1

owner group everyone

• Remember that you need three of these digits to
specify the full permissions for a file or directory

The root Account

• On every Unix or Linux system, there is a special
account named root

• root can access any file or run any program

o root is an administrator account

o It is used for system configuration and maintenance

• Even a system administrator should not log in as root

• Instead, he or she should use a regular Unix account
and use sudo when running a command that needs
root privileges

The root Account

• sudo allows a user to run a command that
normally only root can run

oWhen you run sudo, it asks you for your password
not the password of the root account

o In order to run sudo, you must be on the sudoers
list, a change which only the root account can make

Directory Access Permissions

• The Unix access permissions work a little differently for
directories than they do for files

• Read and write permissions for a directory are similar to
those for a file

o Read permission allows you to list the contents of that
directory using ls

o Write permission allows you to create, delete or change the
name of entries in that directory

 Write permission on a directory does not allow you to change
the contents of a file in that directory

Directory Access Permissions

 Write permission on a directory does not apply to the directory
itself

 If you have write permission on a directory, then you can change
what's inside it, but you cannot rename the directory or delete it –
unless you have write permission on its parent directory

• Execute permission on a directory allows you to do two
things

o It allows you to enter that directory using cd

o It also allows you to read a file in that directory...if you
already have read permission on that file and know the name
of that file

Links

• Links are like shortcuts on a Windows machine or
aliases on a Mac

• Links allow you to move around the filesystem using
short names

• Each of you has an entry in your home directory
called it244

• In the home directory of my test account, cs110ck, I
have such a link...

Links

$ ls -l it244
lrwxrwxrwx 1 cs110ck faculty 34 Sep 2 13:10 it244 ->

/courses/it244/f16/ckelly/cs110ck

• This is a link to /courses/it244/f16/ckelly/cs110ck

• If you cd into this location and use pwd
$ pwd
/home/cs110ck

$ cd it244

$ pwd
/home/cs110ck/it244

Links

• This path reflects the route you took to get here

o But it is not the real pathname of the directory

o You can only get that information if you use pwd with the -P
(note the capitalization) option

$ pwd
/home/cs110ck/it244

$ pwd -P
/courses/it244/f16/ckelly/cs110ck

The Two Types of Links

• There are two types of links

o Hard links

o Symbolic, or soft, links

• Hard links are older

o A hard link is like a duplicate file name

o Hard links can only point to files not directories

o You can only have a hard link to a file if that file is on the
same hard disk volume as the link

The Two Types of Links

• Symbolic links are much more flexible

o You can use either an absolute or relative pathname when
creating a symbolic link

o A symbolic link can point to a file or directory anywhere in
the filesystem

o Deleting a symbolic link does not delete the file or directory
it points to

ln

• To create a symbolic or soft link, use ln with the -s
option

• ln takes two arguments, a pathname and the name for
the link

$ pwd
/home/it244gh

$ ln -s ~ghoffmn/examples_it244 examples

$ ls -l examples
lrwxrwxrwx 1 it244gh libuuid 28 2012-09-17 17:53

examples -> /home/ghoffmn/examples_it244

Removing a Link

• To delete a link, use rm

• If you delete a symbolic link, it will not affect the file or
directory it points to

Syntax of the Command Line

• A command typed at the command line has this format:

COMMAND [OPTIONS] [ARG1] [ARG2] ... [ARGn]

• The brackets indicate that the contents are optional

• Commands vary in the number of options and arguments
they accept

o Some accept none

o Others require a specific number of arguments

o Still others accept a variable number of arguments

• Arguments must be separated by one or more spaces

Command Options

• Options modify the behavior of the command

• Options are usually preceded by one or two dashes -

• GNU programs frequently have options that are
preceded by two dashes --

• The options in GNU programs are usually words

• Options in other Unix programs are usually single-letter

o When a command uses a single dash - before an option,
you can usually combine options following the dash

o An example of this is ls -ltr

Command Options

• Options using two dashes -- usually cannot be
combined

o In this case, each option must be written separately and
preceded by two dashes

• Sometimes the option can have its own argument

• Utilities that report the size of files usually do so in bytes

o Such utilities often have a -h, or --human-readable, option

o With this option, the file size will be displayed in kilobytes,
megabytes or gigabytes, as appropriate

Command Options

• Many commands display a help message when run with
the --help option

• All GNU utilities accept this option

tty

• tty is the terminal device driver and is part of the kernel

• As you type each character at the command line tty
looks at the character and takes appropriate action

oMost of the time, tty just takes the character and
places it in a buffer

o It responds differently to the special editing characters

Backspace
The arrow keys
Control-A

Control-E
Control-U
Control-K

tty

• tty is where all command line editing takes place

• When tty sees a newline character, which is what
you get by hitting Enter (PC) or Return (Mac), it
passes the contents of the buffer to the shell

Parsing the Command Line

• The shell takes the command line and breaks it up
into tokens

o Tokens are the characters you that print and are separated
from each other by whitespace

o The act of breaking up text into tokens is called parsing

• Next, the shell looks for the name of the command

• Usually, the command name is the first string on the
command line

Parsing the Command Line

• The command can be specified by a simple filename

ls

• Or by using a pathname

/bin/ls

The PATH System Variable

• To run a program, a process must be created

o The shell cannot create a process; only the kernel can

o The shell asks the kernel to start the process but in order to
do that, it has to give the kernel a pathname for the
executable file for that program

o Most of the time, when you run a program ,you don't use a
pathname; you simply use the name of the program

• To turn the name of a program into a pathname for the
executable file the shell uses the PATH variable

The PATH System Variable

• PATH contains a list of directories to search to find the
program file

o The shell searches each of these directories in turn...until it finds
an executable file with the name of the command

o PATH always has a default value, which is set when Unix or Linux
is installed

• The absolute pathname of each directory is separated from
the next by a colon :
echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin
:/sbin:/bin:/usr/games

The PATH System Variable

• If the shell reaches the end of the directory listings
in PATH without finding the command, it will display an
error message

• If the shell finds executable file but you do not have
execute privileges, it will tell you this in an error
message

• You can modify the PATH variable in your own Unix
environment

Running a Program in the Current
Directory

• For security reasons, it is never advisable to put the
current directory . in the PATH list

• Then how do you run a program inside your current
directory?

• You can do this using the following construction

./PROGRAM_NAME

• This will always work regardless of the contents of PATH

Running the Command Entered on
the Command Line

• When the shell gets the command line from tty, it
uses PATH to find the executable file to run

• The shell then asks the kernel to start a process for that program

o A process is a running program, and it needs resources to do its job

 Memory

 Access to files

 Time in the machine CPU

o Each process has memory allocated to it that it alone can use

o This prevents one program from interfering with another

Running the Command Entered on
the Command Line

• The shell also gives the program the list of tokens from
the command line

o The name used to call the program

o The options used

o The arguments used

• The shell does not check the options or arguments

• While the program is running, the shell goes into an
inactive state known as "sleep"

Running the Command Entered on
the Command Line

• When the program finishes, it must send an exit
status to the shell

o The exit status is an integer that must be 0 or greater

o An exit status of 0 indicates that the program was able to do
its work without error

o Any exit status greater than zero indicates an error

o A program can issue different error status values for different
types of errors

Running the Command Entered on
the Command Line

• You can see the exit status of the last program by
looking at the value of the system variable ?

$ cat foo

cat: foo: No such file or directory

$ echo $?

1

Standard Input, Standard Output and
Standard Error

• Every Unix process always has access to 3 different "files"

o Standard Input

o Standard Output

o Standard Error

• Unix thinks anything it can write to or read from is a file

• Standard input is where the program gets input when a
specific source (like a file or a device) is not specified

o By default, standard input is the keyboard

Standard Input, Standard Output and
Standard Error

• Standard output is where the program sends its output
if a specific file or device is not mentioned

o By default, standard output is the terminal

• Standard error is where the program sends error
messages

o By default, standard error goes to the same destination as
standard output: the terminal

The Monitor and Keyboard as
Files

• Unix thinks of anything it can read from or write to as a file

• The combination of a keyboard and a monitor is called a
terminal

• Unix can read what you are typing at the keyboard and it
can send output to the monitor so it thinks of the terminal
as a file

• The device driver tty handles input from the keyboard
and output to the terminal

The Monitor and Keyboard as
Files

• tty allows Unix to talk to the "file" that is the terminal

• When you connect to a Unix/Linux machine using ssh,
your PC is the terminal

The Keyboard and Screen as Standard
Input and Standard Output

• When a command or script does not specify where
input is to come from it comes from standard input

o By default, standard input is keyboard

• When a command or script does not specify where
output should go it goes to standard output

o By default, standard output is the screen

• When a command or script does not specify where error
messages should go they goes to standard error

o By default, standard error also is the screen

Redirection

• Redirection is telling Unix to take data from or send
data to a different place than usual

• Redirection is one of the features that makes Unix so
flexible

oYou can take input from something other than the
keyboard like a file

oYou can send output to something other than the
screen like another file

Redirection

• Redirection is what makes pipes possible

oWhen you set up a pipe you are sending the output
from one program into the input of another

oYou are redirecting the output of the first command
from the terminal to the input of the second
command

oThis allows the next command to take its input from
something other than a file

Redirecting Standard Output

• To redirect standard output use the greater than
symbol > followed by a filename

• This tells Unix to send the output from a command to
the file or device that appears after the symbol

• The format for output redirection is

COMMAND [ARGUMENTS] > FILENAME

• If the file does not already exist it will be created

Redirecting Standard Input

• When we redirect standard output, we send output to
something other than the screen

• When we redirect standard input, we take input from
something other than the keyboard

• To do this, we use the less than symbol <

• Here is the format

COMMAND [ARGUMENTS] < FILENAME

Adding Output to an Existing File

• If you redirect standard output to a file that already exists,
you will overwrite the contents of that file

• You will replace the original contents of the file with new
data

• But Unix allows you to add to the bottom of a file

• This is called appending

o The append symbol is two greater than symbols with no space in
between >>

o The format is

COMMAND [ARGUMENTS] >> FILENAME

/dev/null

• Sometimes a program will do something useful but produce
output you don't want

• For situations like this, Unix provides /dev/null

o Any output you send to /dev/null will disappear

o It will never appear on the screen

o If you redirect input to come from /dev/null, then the command will
receive an empty string

• /dev/null is most useful when dealing with error messages

o Since error message normally go to the terminal they will be mixed up
with the regular output

o Sending error messages to /dev/null prevents this from happening

