Shell Usage

- Running a Command in the Background

- Processes and Jobs

- Moving a Job from the Foreground into the Background
- Aborting a Background Job

- Pathname Expansion

- The ? Meta-character

- The * Meta-character

- The [and] Meta-characters

Running a Command in the
Background

- Normally, when you run a command, you have to wait
for it to finish

- Such commands are said to be running in
the foreground

- When the command does not take long to finish, this is
not a problem
o But... some commands take a long time to finish

o Compilers can run for a several minutes if the source code is
long enough

Running a Command in the
Background

- Unix gives you a way to get the command prompt back
afterrunning a command

- You can run the command in the background

o A background command is disconnected from the keyboard,
so you cannot talk to it by typing, but it is not disconnected
from the monitor

o When you run a command in the background, you get the
prompt back immediately — without waiting for the

command to finish

Running a Command in the
Background

- The shell will tell you when the background command
has finished

- Every time you run a program, a process is created

- A process Is a running program

o The process has access to system resources like memory and
the filesystem

o Unix, like most operating systems, is multitasking
o This means you can have multip/e processes running at once!

Running a Command in the
Background

- To run a command in the background, enter an

ampersand & at the end of the command line —just
before hitting Enter

COMMAND [ARGUMENTS] &
- For example:

S sleep 5 &

[1] 17895

S

Running a Command in the
Background

- sleep Is a command that makes a program stop
running for a specified period of time

- It is useful in shell scripts when the script is waiting for
something to happen

- If you put a process in the background, and then log
out, the process will continue to run

Jobs

- Every time vou type something at the command line
and hit Enter, you are creating a job

- Every time a program runs, a process Is created for that
program

- But what about a pipeline?
- A pipeline is a collection of commands, joined by pipes
- Each command will generate its own process, but...

Jobs

- ...the collection of all the separate processes is a single
job
o Each process in a pipeline will have its own process ID

o SO, as the pipeline progresses, the currently running process
will change

o But the job number does not change

- The job is the collection of all processes created at
the command line

Jobs

- If you run a bash script, that script may start other
processes all of which are part of the same job

o You can have multiple jobs running at the same time

o But, only one job can be in the foreground at any one time

- What's so special about the foreground?

o Only the foreground job can accept input from the keyboard

- Every process has a process ID number and every job
has a job number

Jobs

- When you tell the shell to run a job in the background,
It returns two numbers

S sleep 5 &

[1] 7431

$

o The job number is enclosed in brackets and comes first

o The second, larger, number is the process identification
number of the first process in the job

o The process identification number is also known as the PID

Jobs

- When the job finishes, the shell prints a message...
[1]+ Done sleep 5

..but the message does not appear right away.

o If it did that, then it might appear while another job is
producing output!

o That would be very annoying, and you might miss it.

o Instead, the shell waits for the next time you hit Enter and
prints the message saying the job is finished before any
output from the command you just entered.

Jobs

- If a job placed in the background produces output to
standard output, it must be redirected.

o Otherwise, the output from the background job will go to the
terminal while you are working on other things

o This can be very confusing

o So be sure to redirect any output from a background job to a
file or /dev/null

Moving a Job from the Foreground
into the Background

- When you run a command, it will normally run in the foreground

- There can only be one foreground job, though you can have
many background jobs

- What if you were running a foreground job, but it took more time
than you expected, and you wanted to get your prompt back?

o Unix will let you suspend the job, which does not kill it.

o A suspended job is merely sleeping, and you can reactivate it later
o To suspend a foreground job, you must type the suspend key sequence

Moving a Job from the Foreground
into the Background

- Control-Z is the most common suspend key sequence

o It is what our systems use
o After you type Control-2Z, the shell stops the current job

o It also disconnects it from the keyboard

- The job, still exists, but it has stopped running, and it is in a state
of suspended animation

o Once the job is suspended, you can place it in the background using
the bg command

o bg stands for background

Moving a Job from the Foreground
into the Background

- Let's examine a script another instructor created —bother.sh -
which prints a message to the screen every few seconds

$./bother.sh S bg 1l
Excuse me [1]+ ./bother.sh &

Excuse me S Excuse me
Excuse me Excuse me
Z Excuse me

[1]+ Stopped ./bother.sh jobs
[1]+ Running ./bother.sh &

- Once placed in the background, the job resumes running
- If multiple jobs are running, then you must give bg the job number

Aborting a Background Job

- How do you stop a job that is running in the
background? There are two ways...

- If the job were running in the foregroundyou could
stop it by hitting Control-C

o That works with a foreground job because it is connected to
the keyboard

o But, a background job can't hear anything from the keyboard
o The keyboard is disconnected from background jobs

Aborting a Background Job

- But, you can bring a job from the background /nto the
foreground

o You do this using the £g (foreground) command

o Once you have the job in the foreground, you can abort it
using Control-C

S ./bother.sh &
[1] 10575

$ Excuse me
1s
bother.sh sleep echo.sh

Aborting a Background Job

S Excuse me
Excuse me

fg
./bother. sh
Excuse me

~C

$

o When there is more than one job in the background, you
must give f£g the job number

o But, there is another way to kill a background job...

Aborting a Background Job

- You can terminate any job using the kill command
- But, to use kill, you must tell it what to kill...

- The usual way to do this is with the process ID of the
process you want to terminate

o You are given the job and the process numbers when you
start the background job

o If you forget them, you can always run ps (process status),
which tells you the process numbers for your present session.

Aborting a Background Job

- For example...

S ./bother.sh &
[1] 12444

$ Excuse me
ps

PID TTY TIME CMD
12264 pts/2 00:00:00 bash
12444 pts/2 00:00:00 bother.sh
12447 pts/2 00:00:00 sleep
12448 pts/2 00:00:00 ps

S Excuse me
Excuse me

Aborting a Background Job

- Once you have the process number, you can run kill

S Excuse me
Excuse me
kill 12444

$
[1]1+ Terminated ./bother.sh

$
- You can also use the job number with kil1l

o But, you must precede a job number with a percent sign, %
o You can get the job number by using the jobs command...

Aborting a Background Job

- For example:

E
$./bother.sh & $ Excuse me

[1] 12543
S Excuse me

Excuse me
Excuse me

Excuse me
Excuse me

Excuse me
Excuse me

_ kill %1
Jjobs 5
[1]+ Running . /bother.sh & [1]+ Terminated ./bother.sh

S

Pathname Expansion

- What if you wanted to get a long listing on all files in a directory
whose names started with "example"?

o It would be painful to type af/the names — one at a time — as
arguments to 1s

o Fortunately, Unix provides a better way

- This is a feature called pathname expansion. It is also
sometimes called globbing

. Pathname expansion uses meta-characters

o Meta-characters are sometimes called wildcards

o They allow you to specify a pattern

Pathname Expansion

- When the shell sees such a pattern on the command line, it does
something before executing the command

o The shell replaces the pattern with a sorted list of all pathnames that
match the pattern.

o Then, it runs this altered command line

o The pattern is called an ambiguous file reference

- What if the shell finds no matching pathnames?

o In that case, it passes the ambiguous file reference to the program
called on the command line

o The shell lets the program try to make sense of the pattern!

Pathname Expansion

- Pathname expansion is an operation performed by the
shell before the program is called

o You can use as many meta-characters as you want to form a
pattern

o Pathname expansion lets you specify a set of files with a
minimum amount of typing

o It also comes in handy when you can't rememberthe exact
pathname

- Pathname expansion is different from pathname
completion...

Pathname Expansion

- Pathname completion is what you get by hitting Tab

O

O

O

O

Pathname completion only gives you one pathname

Pathname expansion can create several pathnames with one
pattern

Pathname completion is an operation handled by tty

Pathname expansion is performed by the shell

- Now, we will look at some of the more common and
useful meta-characters...

The ? Meta-character

- The question mark ? meta-character stands for any one
character

- For a long listing of everything in my current directory whose
names begin with "dir" followed by a single additional character,
[could use:

S 1s -1d dir?

drwxrwxrwx 2 it244gh libuuid 512 2011-09-30 15:26 dirl
drwxr--r-- 2 it244gh libuuid 512 2011-09-30 15:26 dir2
drwxrw---- 2 it244gh libuuid 512 2011-09-30 15:29 dir3
drwxrw---- 2 it244gh libuuid 512 2011-09-30 15:29 dir4

The ? Meta-character

.- Meta-characters work with any command
S echo dir-?
dirl dir2 dir3 dir4

- The ? meta-character does not match a leading period in a
filename

- You must explicitly enter a leading period . when specifying an
"Invisible" file

*

The Meta-character

- An asterisk * will match any number of characters in a
pathname

. It will even match no characters

- To find all the directories with names beginning with "dir" we

can use the * meta-character
S 1s -1d dir*

drwxr-xr-x
drwXrwxrwx
drwxr-xr-x
drwxr--r--
drwxrw----
drwxr-xr-x

2

it244gh

2 it244gh

NMNMNDNDN

it244gh
it244gh
it244gh
it244gh

libuuid
libuuid
libuuid
libuuid
libuuid
libuuid

512
512
512
512
512
512

2011-10-04
2011-09-30
2011-10-04
2011-09-30
2011-09-30
2011-10-02

13:
15:
13:
15:
15:
:07

17

52
26
53
26
29

dir
dirl
dirlO
dir2
dir3
dir4

The * Meta-character

- Notice that * returns more names than ?

o It returned dir, which has no additional characters after the
string "dir"

o And it returned dir10, since it will accept any number of
characters

o Note also that dir100 appears before dir2, since the list
the shell creates is sorted alphabetically

o * can be used with any command even those that don't
normally deal with files

S echo dir*
dir dirl dirl0 dir2 dir3 dir4

The * Meta-character

- * cannot be used to match the initial period . Ina
hidden filename

- But you can list all the hidden file in a directory using *
$ echo .*

.addressbook .addressbook.1lu
.bash history .cache .cshrc .login .msgsrc
.pilnerc .ssh

The [and] Meta-characters

The square brackets [and] are also meta-characters
They work somewhat like the ?

They only match a single character in a pathname, but
the pathname character must match one of the
characters within the brackets

- If wanted a long listing of directories named dirl,
dir2, and dir3, but wanted to omitdir4, then I could
use the square brackets.

The [and] Meta-characters

- For example:

ls -1d dir[123]

drwxrwxrwx 2 it244gh libuuid 512 2011-09-30 15:26 dirl
drwxr--r-- 2 it244gh libuuid 512 2011-09-30 15:26 dir2
drwxrw---- 2 it244gh libuuid 512 2011-09-30 15:29 dir3

- No matter how many characters are within the brackets,
the pattern can match only a single character

- You can use the bracket with any program:

S echo dir[123]
dirl dir2 dir3

The [and] Meta-characters

- You can use a range to avoid explicitly listing all
characters

o A range is specified by listing the first and last characters of a
sequence separated by a dash, -

o The sequence is specified by alphabetical order
ls -1d dir[1-3]
drwxrwxrwx 2 it244gh libuuid 512 2011-09-30 15:26 dirl
drwxr--r-- 2 it244gh libuuid 512 2011-09-30 15:26 dir2
drwxrw---- 2 it244gh libuuid 512 2011-09-30 15:29 dir3

The [and] Meta-characters

- The square brackets provide another shortcut

- If you insert an exclamation mark, ! , ora
caret, A immediately after the opening bracket the

shell will match any single character NOT included
within the brackets

S echo foo['46]
fool foo2 foo3 foo5 foo7 foo8 foo9

