
Shell Usage

• Running a Command in the Background

• Processes and Jobs

• Moving a Job from the Foreground into the Background

• Aborting a Background Job

• Pathname Expansion

• The ? Meta-character

• The * Meta-character

• The [and] Meta-characters

Running a Command in the
Background

• Normally, when you run a command, you have to wait
for it to finish

• Such commands are said to be running in
the foreground

• When the command does not take long to finish, this is
not a problem

o But... some commands take a long time to finish

o Compilers can run for a several minutes if the source code is
long enough

Running a Command in the
Background

• Unix gives you a way to get the command prompt back
after running a command

• You can run the command in the background

o A background command is disconnected from the keyboard,
so you cannot talk to it by typing, but it is not disconnected
from the monitor

o When you run a command in the background, you get the
prompt back immediately – without waiting for the
command to finish

Running a Command in the
Background

• The shell will tell you when the background command
has finished

• Every time you run a program, a process is created

• A process is a running program

o The process has access to system resources like memory and
the filesystem

o Unix, like most operating systems, is multitasking

o This means you can have multiple processes running at once!

Running a Command in the
Background

• To run a command in the background, enter an
ampersand & at the end of the command line – just
before hitting Enter

COMMAND [ARGUMENTS] &

• For example:

$ sleep 5 &

[1] 17895

$

Running a Command in the
Background

• sleep is a command that makes a program stop
running for a specified period of time

• It is useful in shell scripts when the script is waiting for
something to happen

• If you put a process in the background, and then log
out, the process will continue to run

Jobs

• Every time you type something at the command line
and hit Enter, you are creating a job

• Every time a program runs, a process is created for that
program

• But what about a pipeline?

• A pipeline is a collection of commands, joined by pipes

• Each command will generate its own process, but...

Jobs

• ...the collection of all the separate processes is a single
job

o Each process in a pipeline will have its own process ID

o So, as the pipeline progresses, the currently running process
will change

o But the job number does not change

• The job is the collection of all processes created at
the command line

Jobs

• If you run a bash script, that script may start other
processes all of which are part of the same job

o You can have multiple jobs running at the same time

o But, only one job can be in the foreground at any one time

• What's so special about the foreground?

o Only the foreground job can accept input from the keyboard

• Every process has a process ID number and every job
has a job number

Jobs

• When you tell the shell to run a job in the background,
it returns two numbers

$ sleep 5 &

[1] 7431

$

o The job number is enclosed in brackets and comes first

o The second, larger, number is the process identification
number of the first process in the job

o The process identification number is also known as the PID

Jobs

• When the job finishes, the shell prints a message...

[1]+ Done sleep 5

...but the message does not appear right away.

o If it did that, then it might appear while another job is
producing output!

o That would be very annoying, and you might miss it.

o Instead, the shell waits for the next time you hit Enter and
prints the message saying the job is finished before any
output from the command you just entered.

Jobs

• If a job placed in the background produces output to
standard output, it must be redirected.

o Otherwise, the output from the background job will go to the
terminal while you are working on other things

o This can be very confusing

o So be sure to redirect any output from a background job to a
file or /dev/null

Moving a Job from the Foreground
into the Background

• When you run a command, it will normally run in the foreground

• There can only be one foreground job, though you can have
many background jobs

• What if you were running a foreground job, but it took more time
than you expected, and you wanted to get your prompt back?

o Unix will let you suspend the job, which does not kill it.

o A suspended job is merely sleeping, and you can reactivate it later

o To suspend a foreground job, you must type the suspend key sequence

Moving a Job from the Foreground
into the Background

• Control-Z is the most common suspend key sequence

o It is what our systems use

o After you type Control-Z, the shell stops the current job

o It also disconnects it from the keyboard

• The job, still exists, but it has stopped running, and it is in a state
of suspended animation

o Once the job is suspended, you can place it in the background using
the bg command

o bg stands for background

Moving a Job from the Foreground
into the Background

• Let's examine a script another instructor created – bother.sh –
which prints a message to the screen every few seconds

• Once placed in the background, the job resumes running

• If multiple jobs are running, then you must give bg the job number

$./bother.sh
Excuse me
Excuse me
Excuse me
^Z
[1]+ Stopped ./bother.sh

...

$ bg 1
[1]+ ./bother.sh &
$ Excuse me
Excuse me
Excuse me
jobs
[1]+ Running ./bother.sh &

Aborting a Background Job

• How do you stop a job that is running in the
background? There are two ways...

• If the job were running in the foreground you could
stop it by hitting Control-C

o That works with a foreground job because it is connected to
the keyboard

o But, a background job can't hear anything from the keyboard

o The keyboard is disconnected from background jobs

Aborting a Background Job

• But, you can bring a job from the background into the
foreground

o You do this using the fg (foreground) command

o Once you have the job in the foreground, you can abort it
using Control-C
$./bother.sh &
[1] 10575

$ Excuse me
ls
bother.sh sleep_echo.sh
...

Aborting a Background Job

...
$ Excuse me
Excuse me
fg
./bother.sh
Excuse me
^C

$

o When there is more than one job in the background, you
must give fg the job number

o But, there is another way to kill a background job...

Aborting a Background Job

• You can terminate any job using the kill command

• But, to use kill, you must tell it what to kill...

• The usual way to do this is with the process ID of the
process you want to terminate

o You are given the job and the process numbers when you
start the background job

o If you forget them, you can always run ps (process status),
which tells you the process numbers for your present session.

Aborting a Background Job

• For example...
$./bother.sh &
[1] 12444

$ Excuse me
ps
PID TTY TIME CMD

12264 pts/2 00:00:00 bash
12444 pts/2 00:00:00 bother.sh
12447 pts/2 00:00:00 sleep
12448 pts/2 00:00:00 ps

$ Excuse me
Excuse me

Aborting a Background Job

• Once you have the process number, you can run kill
$ Excuse me
Excuse me
kill 12444
$
[1]+ Terminated ./bother.sh
$

• You can also use the job number with kill

o But, you must precede a job number with a percent sign, %

o You can get the job number by using the jobs command...

Aborting a Background Job

• For example:

$./bother.sh &

[1] 12543

$ Excuse me

Excuse me

Excuse me

jobs

[1]+ Running ./bother.sh &

...

...

$ Excuse me

Excuse me

Excuse me

Excuse me

Excuse me

kill %1

$
[1]+ Terminated ./bother.sh

$

Pathname Expansion

• What if you wanted to get a long listing on all files in a directory
whose names started with "example"?

o It would be painful to type all the names – one at a time – as
arguments to ls

o Fortunately, Unix provides a better way

• This is a feature called pathname expansion. It is also
sometimes called globbing

• Pathname expansion uses meta-characters

o Meta-characters are sometimes called wildcards

o They allow you to specify a pattern

Pathname Expansion

• When the shell sees such a pattern on the command line, it does
something before executing the command

o The shell replaces the pattern with a sorted list of all pathnames that
match the pattern.

o Then, it runs this altered command line

o The pattern is called an ambiguous file reference

• What if the shell finds no matching pathnames?

o In that case, it passes the ambiguous file reference to the program
called on the command line

o The shell lets the program try to make sense of the pattern!

Pathname Expansion

• Pathname expansion is an operation performed by the
shell before the program is called
o You can use as many meta-characters as you want to form a

pattern

o Pathname expansion lets you specify a set of files with a
minimum amount of typing

o It also comes in handy when you can't remember the exact
pathname

• Pathname expansion is different from pathname
completion...

Pathname Expansion

• Pathname completion is what you get by hitting Tab

o Pathname completion only gives you one pathname

o Pathname expansion can create several pathnames with one
pattern

o Pathname completion is an operation handled by tty

o Pathname expansion is performed by the shell

• Now, we will look at some of the more common and
useful meta-characters...

The ? Meta-character

• The question mark ? meta-character stands for any one
character

• For a long listing of everything in my current directory whose
names begin with "dir" followed by a single additional character,
I could use:
$ ls -ld dir?

drwxrwxrwx 2 it244gh libuuid 512 2011-09-30 15:26 dir1

drwxr--r-- 2 it244gh libuuid 512 2011-09-30 15:26 dir2

drwxrw---- 2 it244gh libuuid 512 2011-09-30 15:29 dir3

drwxrw---- 2 it244gh libuuid 512 2011-09-30 15:29 dir4

The ? Meta-character

• Meta-characters work with any command
$ echo dir?

dir1 dir2 dir3 dir4

• The ? meta-character does not match a leading period in a
filename

• You must explicitly enter a leading period . when specifying an
"invisible" file

The * Meta-character

• An asterisk * will match any number of characters in a
pathname

• It will even match no characters

• To find all the directories with names beginning with "dir" we
can use the * meta-character
$ ls -ld dir*
drwxr-xr-x 2 it244gh libuuid 512 2011-10-04 13:52 dir
drwxrwxrwx 2 it244gh libuuid 512 2011-09-30 15:26 dir1
drwxr-xr-x 2 it244gh libuuid 512 2011-10-04 13:53 dir10
drwxr--r-- 2 it244gh libuuid 512 2011-09-30 15:26 dir2
drwxrw---- 2 it244gh libuuid 512 2011-09-30 15:29 dir3
drwxr-xr-x 2 it244gh libuuid 512 2011-10-02 17:07 dir4

The * Meta-character

• Notice that * returns more names than ?
o It returned dir, which has no additional characters after the

string "dir"

o And it returned dir10, since it will accept any number of
characters

o Note also that dir100 appears before dir2, since the list
the shell creates is sorted alphabetically

o * can be used with any command even those that don't
normally deal with files
$ echo dir*
dir dir1 dir10 dir2 dir3 dir4

The * Meta-character

• * cannot be used to match the initial period . in a
hidden filename

• But you can list all the hidden file in a directory using *

$ echo .*

. .. .addressbook .addressbook.lu

.bash_history .cache .cshrc .login .msgsrc

.pinerc .ssh

The [and] Meta-characters

• The square brackets [and] are also meta-characters

• They work somewhat like the ?

• They only match a single character in a pathname, but
the pathname character must match one of the
characters within the brackets

• If I wanted a long listing of directories named dir1,
dir2, and dir3, but wanted to omit dir4, then I could
use the square brackets.

The [and] Meta-characters

• For example:
ls -ld dir[123]
drwxrwxrwx 2 it244gh libuuid 512 2011-09-30 15:26 dir1
drwxr--r-- 2 it244gh libuuid 512 2011-09-30 15:26 dir2
drwxrw---- 2 it244gh libuuid 512 2011-09-30 15:29 dir3

• No matter how many characters are within the brackets,
the pattern can match only a single character

• You can use the bracket with any program:
$ echo dir[123]
dir1 dir2 dir3

The [and] Meta-characters

• You can use a range to avoid explicitly listing all
characters

o A range is specified by listing the first and last characters of a
sequence separated by a dash, -

o The sequence is specified by alphabetical order

ls -ld dir[1-3]

drwxrwxrwx 2 it244gh libuuid 512 2011-09-30 15:26 dir1

drwxr--r-- 2 it244gh libuuid 512 2011-09-30 15:26 dir2

drwxrw---- 2 it244gh libuuid 512 2011-09-30 15:29 dir3

The [and] Meta-characters

• The square brackets provide another shortcut

• If you insert an exclamation mark, ! , or a
caret, ^ immediately after the opening bracket the
shell will match any single character NOT included
within the brackets

$ echo foo[!46]

foo1 foo2 foo3 foo5 foo7 foo8 foo9

